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Abstract 

Organisms encode rewarding and aversive experiences through reinforcement learning, 

capitalizing on prediction errors (PEs), which adapt action strategies over time. Computational 

theories are explicit that PE signals should update action weights continuously over the course 

of a behavioral task, an important time-dependent variation that is eschewed in traditional 

neuroscience studies that average over large numbers of trials. I examined variation in reaction 

times and feedback-locked cortical activity over time as a function of PE to critically examine 

theories indicating that PE signals drive time-dependent learning. We recorded EEG while 

participants completed a novel reinforcement task that varied prediction error on a trial-by-trial 

basis. I applied a computational framework that modeled reaction time changes over the task as 

a function of prediction error and time. In positive reinforcement conditions, reaction times 

improved over the course of the task regardless of the PE. For negative reinforcement, learning 

effects were moderated by PE. For better than expected outcomes, more positive prediction 

errors (further from expectation) drove faster reaction times over the course of the task, and for 

worse than expected outcomes, more negative prediction errors (further from expectation) drove 

faster reaction times over the course of the task. Behavioral analyses were supplemented by 

single-trial robust regression of feedback-locked EEG. The feedback-related negativity (FRN), a 

mediofrontal ERP component thought to convey a PE signal, showed robust changes in 

activation over time but did not respond to trial-by-trial magnitude of prediction errors. This time-

dependent change was evident only for reward delivery and aversive stimulus delivery, which 

represent on average the most salient outcomes in the task. Mediofrontal brain activity during 

this same time window and at the same scalp location drove subsequent reaction time 

improvements over the course of the task following aversive stimulus delivery. I suggest that the 

standard approach of examining the ERP as an average across conditions obscures important 

adaptation effects of the FRN that reflect reinforcement learning as outcomes are learned. 
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 1 

1 Introduction  

1.1 Computational perspectives on reinforcement learning 

Through our interactions with the environment around us, we learn about the causes and 

effects of our actions, as well as what actions we should take in the future to maximize positive 

outcomes. The term reinforcement was first introduced by Pavlov (1903) to describe the 

associative pairing of a conditioned predictor stimulus with an unconditioned reinforcing 

stimulus. This initial conception used reinforcement to describe stimulus-stimulus learning, that 

is, to describe how an organism learns to associate a non-reward stimulus with a reward 

stimulus. The term has since become used more often to describe stimulus-response learning; 

that is, how an organism learns to associate an environmental stimulus with a behavioral 

response. The strength of stimulus-response associations depends on which responses most 

often lead to desired outcomes. This concept was described in Thorndike’s (1905) law of effect, 

which suggested that responses which are followed by reward will be more strongly associated 

with the environmental situation that spurred them. When that situation re-occurs, a response 

which was closely followed by reward will be more likely to re-occur. 

From a computational perspective, the reinforcement learning problem must map 

environmental situations onto those behaviors that maximize positive outcomes and minimize 

negative outcomes (Sutton & Barto, 1998). In computational approaches to reinforcement 

learning, a key concept revolves around the prediction error term (PE). The PE term represents 

the deviation of outcomes from expectations, guiding optimal learning from environmental 

occurrences. A large PE term indexes an outcome that was far from the prediction. This should 

spur changes in future action strategies, in order to bring future outcomes more in line with 

predictions. Likewise, a small or nonexistent PE term indexes outcomes that were properly 

predicted; this should translate to slower or no learning rates when outcomes are close to what 

was expected. One classic model of reinforcement learning is the Rescorla-Wagner model 

(Rescorla & Wagner, 1972). In this model, a stronger association between stimuli means that 
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one stimulus predicts the other (i.e. low prediction error) and a weaker association means that 

one stimulus does not accurately predict the other (i.e. high prediction error). This model 

conceives of associations as carrying a signed value – specifically, if a stimulus predicts a 

reward, it carries a positive association, and if a stimulus predicts an aversive outcome it carries 

a negative association. Therefore, the prediction error term in the Rescorla-Wagner model 

carries information about how strongly a stimulus predicts an outcome, as well as whether the 

stimulus predicts a better-than-expected or worse-than-expected outcome. This type of PE term 

is called either a signed or value PE. These terminologies will be used interchangeably in this 

review. 

The Pearce-Hall error learning model (Pearce & Hall, 1980), like the Rescorla-Wagner 

model, conceived of learning in terms of associations between conditioned and unconditioned 

stimuli. However, the prediction error term in this model takes a different approach to that of the 

Rescorla-Wagner model. In the Pearce-Hall implementation, the strength of association 

between the unconditioned stimulus and the conditioned stimulus depends on the attention paid 

to the conditioned stimulus. Since both rewarding and aversive events are attention-grabbing, 

the PE term in this model does not explicitly code for whether an outcome was better or worse 

than expected. Instead, outcomes which are both salient (better-than-expected or worse-than-

expected) and unexpected are associated more strongly with the predictive stimulus. This type 

of prediction error is called either an unsigned or salience PE. These terminologies are used 

interchangeably in the remainder of this review. 

Previous theoretical perspectives on reinforcement learning suggest that the most 

important computational term underlying learning is the prediction error term (Glascher, Daw, 

Dayan, & O’Doherty, 2010; Glimcher, 2011; Pearce & Hall, 1980; Rescorla & Wagner, 1972; 

Sutton & Barto, 1998). However, theories have disagreed on the exact form this term should 

take. The Rescorla-Wagner model suggested that the PE term would follow a value function, 

that linearly increased with increasing reward value and decreased for increasingly aversive 
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stimuli (Rescorla & Wagner, 1972). The Pearce-Hall error learning model instead used a 

salience function for the prediction error term, which increased with increasing salience of 

rewards or punishments but was agnostic to the “value” (good or bad) of the outcome (Pearce & 

Hall, 1980). See Figure 1 for a depiction of signed vs. unsigned prediction error signaling.  

 

 
Figure 1. Comparison of Signed (“Value”) and unsigned (“Salience”) Prediction Errors. The main 
difference is in how the terms behave when outcomes are worse than expected (O < E); a 
signed prediction error will decrease with worse outcomes, whereas an unsigned prediction 
error will scale with increasing salience regardless of the value of an outcome. From Rawls et 
al. (under review). 
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A third class of models, temporal difference (TD; Sutton & Barto, 1987; Sutton, 1988) 

models, provide an encompassing theory and computational approach to studying how past 

outcomes are integrated in learning stimulus-response associations. TD models posit that both 

the subjective “value” of outcomes and the subjective “salience” of outcomes are critical in 

determining learning. Outcomes with positive value will stimulate approach behavior and 

outcomes with negative value will stimulate avoidance behavior. Meanwhile, outcomes with 

higher salience (better-than-expected or worse-than-expected) will result in more rapid 

alteration of associative weights, thereby speeding learning. This perspective on reinforcement 

learning does not assume importance of only a value or salience PE, but instead point to the 

importance of both terms in determining reinforcement learning outcomes. Most importantly, 

and most neglected in the current literature, is the implicit notion that the signaling of PEs 

should change over time as outcomes and task contingencies are learned. 

1.2 Dopamine implicated in reinforcement learning through PE signals 

There is substantial disagreement in neuroscience literature about how reinforcement 

learning computations, and in particular PE terms, are reflected in neural architecture. Most 

discussion around the neural implementation of reinforcement learning posits that dopamine is a 

key factor in representing the reinforcing properties of outcomes with regard to expectations. 

There are two main regions in the brain where dopamine cell bodies reside – the ventral 

tegmental area (VTA) and the substantia nigra pars compacta (SN). These pathways 

differentially contribute to the main functions of dopamine in the brain. The dopamine system 

originating in the substantia nigra modulates many of the motor functions of dopamine, while the 

dopamine system originating in the VTA modulates the reinforcing impacts of dopamine. 

Therefore, I will focus on the VTA dopamine system. The primary dopaminergic projections of 

the VTA are the mesocortical and mesolimbic pathways, which transmit to the prefrontal and 

motor cortices, and the nucleus accumbens, respectively. These dopaminergic pathways play 

an important role in reinforcement learning. In particular, dopaminergic signals might convey 
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prediction error signals in the brain. Sparse VTA dopaminergic projections also reach the 

amygdala and the hippocampus, which are implicated in emotional modulation of reinforcement 

and memory of reinforcement, respectively. In our review of the mesolimbic reward system, I will 

primarily focus on dopaminergic projections from VTA to NAcc, in line with most reinforcement 

literature. 

1.3 Dopamine value PE coding in VTA neurons 

Early research on dopamine in reinforcement suggested that dopamine neurons 

encoded a value (signed) prediction error (Schultz, Dayan, & Montague, 1997; Hollerman & 

Schultz, 1998). This study recorded firing rates of dopamine neurons in the macaque midbrain 

during delivery of expected reward, omission of expected reward, and delivery of unexpected 

reward. Results indicated that dopamine firing rates closely approximated what would be 

expected of a value prediction error signal. Specifically, firing rate increased from baseline for 

unexpected reward delivery (reward > expectation), firing rate remained at baseline for 

expected reward delivery (reward = expectation), and firing rate fell below baseline for 

unexpected reward omission (reward < expectation). This result has since been replicated many 

times and is one of the mainstays in reinforcement research. 

Steinberg, Keiflin, Boivin, Witten, Deisseroth, & Janak (2013) causally inferred the link 

between positive reward prediction error signals in dopaminergic neurons and reward learning 

using optogenetic techniques. This experiment used a blocking procedure, in which a novel cue 

is co-presented with a preconditioned cue that predicted reward. Usually, this would not result in 

the organism learning to associate reward with the novel cue. However, when VTA dopamine 

neurons were stimulated while the cue stimuli were presented, this caused rats to learn to 

associate reward with the novel stimulus. This provides causal evidence that mimicking a 

positive prediction error in VTA causes associative learning that would normally be blocked. 

Importantly, this study only investigated whether a positive prediction error (simulating better 

than expected outcomes by increasing dopamine firing in VTA) drove reinforcement learning.  
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Dopamine neurons have a very low basal spike output, meaning that negative reward 

prediction errors cannot slow dopamine output very much. For this reason, negative reward 

prediction error signaling might not have the same causal behavioral effects as positive reward 

prediction error signaling, due to a lack of variance in the signal. To examine whether this is the 

case, Chang, Esher, Marrero-Garcia, Yau, Bonci, & Schoenbaum (2016) conditioned rats to 

associate one pellet of food reward with two separate cues. In this over-expectation procedure, 

the subsequent co-presentation of both cues at once causes the rat to expect two food pellets of 

reward (one for each conditioned stimulus). If only one food pellet is then given, a negative 

prediction error is generated, which would lower associative value of both predictive stimuli. 

However, Chang et al. (2016) presented two food pellets (no prediction error), while instead 

simulating a negative prediction error by optogenetically silencing dopamine neurons in VTA. 

Although the expected reward was delivered, therefore generating no prediction error, follow-up 

testing demonstrated a reduced ability of the conditioned stimuli to generate motivated 

responses, as though the rat had received a lesser reward than expected. Therefore, even 

though the outcome did not generate a prediction error, simulation of a negative prediction error 

by silencing output of VTA dopaminergic neurons was sufficient to decrease associative weight. 

1.4 Dopamine salience PE coding in VTA neurons 

Since the initial discovery that dopamine indexed a signed prediction error-like signal 

(Schulz et al., 1997), further research has indicated that this interpretation is far from clear-cut. 

While Schulz et al. (1997) and Hollerman and Schultz (1998) initial sets of findings indicated 

that dopamine neurons convey signed prediction errors, this interpretation is hard to reconcile 

with evidence that dopamine neurons in VTA respond to a multitude of potentially important 

stimuli. For example, it has been known for decades that VTA dopaminergic neurons respond to 

unconditioned sensory stimuli in both auditory and visual modalities (Chiodo, Antelman, 

Caggiula, & Lineberry, 1980; Horvitz, Stewart, & Jacobs, 1997). Furthermore, the finding that 

aversive stimuli increase phasic activation of VTA dopamine neurons has been replicated 
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numerous times (Brischoux, Chakraborty, Brierley, & Ungless, 2009; Guarraci & Kapp, 1999; 

Mantz, Thierry, & Glowinski, 1989; Matsumoto & Hikosaka, 2009). Thus, if dopaminergic 

prediction errors encode only linear, value-based prediction errors, then a dopamine increase 

for noxious stimuli is perplexing.  

There is mounting evidence that dopamine neurons convey different signals depending 

on anatomical location. Brischoux, Chakraborty, Brierley, & Ungless (2009) investigated this 

issue further, and found that separate dopamine neurons seemed to respond to aversive and 

rewarding stimuli within the VTA. Specifically, these results showed that neurons in the ventral 

portion of VTA were excited by foot shock, while neurons in the dorsal VTA were inhibited by 

foot shock. This suggests that neurons in ventral portions of VTA might code for outcome 

salience over value (since a foot shock is salient but not valuable). A portion of the neurons that 

were unresponsive to or inhibited by foot shock were excited by release of (escape from) foot 

shock. This shows that these neurons meet theoretical criteria for a value PE signal for aversive 

stimuli, since escape or release from a noxious stimulus is reinforcing. Aversive stimuli therefore 

discriminate neurons in the VTA which signal a value PE from those that signal a salience PE. 

This suggests that there might be separate populations of dopamine neurons conveying signed 

and unsigned PEs in the brain (Hikosaka & Matsumoto, 2009). Some recent evidence even 

indicates that individual dopamine neurons might convey both salience and value PEs at 

different time-scales. In a recent review Schultz (2016) suggested that dopamine neurons might 

convey a rapid salience signal, followed by a more gradual value signal. 

1.5 PE signals in dopamine release in nucleus accumbens 

One way to tease apart the neural pathway-specific mechanisms by which dopamine 

impacts reinforcement is through careful examination of dopamine release in downstream 

targets of VTA dopamine cell bodies. The main target of dopaminergic projections from the VTA 

in the mesolimbic pathway, colloquially known as the “reward pathway,” is the nucleus 

accumbens (NAcc). The nucleus accumbens is comprised of two main regions, the core and the 
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shell. Hart, Rutledge, Glimcher, & Phillips (2014) used fast-scan cyclic voltammetry (an invasive 

real-time electricity-based method to measure neurotransmitter concentration) in combination 

with principal components analysis (PCA) to assess reward-evoked real-time dopamine release 

in rat nucleus accumbens. They concluded that a principal component of dopamine release in 

the rat nucleus accumbens follows a bidirectional value signal, coding symmetrically for 

negative and positive signed PEs. This study also identified an earlier principal component of 

dopamine release in NAcc that did not satisfy requirements of a signed PE. The authors 

suggested that this component might correspond to an early indicator of salience, perhaps a 

response to a compound stimulus predicting the end of the waiting period and the beginning of 

the reward period. Importantly, this early dopamine component seems to correspond to the 

early, nondiscriminant activity of dopamine neurons described in Schulz (2016), suggesting that 

both early and late phasic responses of dopamine neurons are accurately reflected in separable 

principal components of NAcc dopamine release, and that NAcc dopamine release might 

encode an early salience signal followed by a later value signal. 

Different regions of the nucleus accumbens might differentially encode reinforcing or 

salient aspects of stimuli. Budygin, Park, Bass, Grinevich, Bonin, and Wightman (2012) used 

fast-scan cyclic voltammetry to assess real-time dopamine release in regions of the rat midbrain 

during processing of aversive stimuli. This study showed that tail pinch (an aversive stimulus 

commonly used in rat research) resulted in fast increases in dopamine concentration in nucleus 

accumbens core but did not change dopamine concentrations in nucleus accumbens shell. 

Meanwhile, release of tail pinch rapidly increased dopamine concentrations in nucleus 

accumbens shell. Therefore, core dopamine concentrations seem to encode delivery of aversive 

stimuli, while shell regions seem to code for negative reinforcement due to escape from 

aversive stimuli. This result is supported by Wightman et al. (2007) in a study in which rats were 

conditioned to fear a tone. Tone presentation decreased dopamine release in the core region, 

but increased dopamine transmission in the shell region. Since the unconditioned stimulus (foot 
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shock) was not presented, the authors suggested that increases in dopamine concentration in 

the NAcc shell region might code for negative reinforcement due to successful avoidance of 

aversive outcomes. This is consistent with a signed dopaminergic PE signal in NAcc shell. 

However, dopamine release in the NAcc core increases for several different forms of negative 

stimuli in the manner expected of a salience signal. The increase in DA release for aversive 

stimuli seems to facilitate active avoidance behavior. Olesen, Gentry, Chioma, & Cheer (2012) 

measured real-time dopamine release in NAcc core during an active avoidance paradigm. The 

authors found increases in accumbal dopamine release prior to successful avoidance, which 

seems linked to dopamine increases signaling the potential to avoid aversive stimuli. Accumbal 

dopamine release decreased prior to unsuccessful avoidance responses, which the authors 

linked to decreases in dopamine release signaling delivery of aversive stimuli. Based on these 

results, dopamine release seems to carry different information content in the nucleus 

accumbens core vs. shell. Specifically, dopamine release in the shell of the nucleus accumbens 

seems to carry a traditional dopaminergic value PE, while dopamine release in the core of the 

nucleus accumbens instead seems to carry a dopaminergic salience signal. 

1.6 PE signals in dopamine release in prefrontal cortex 

A separate group of dopaminergic cell bodies project from the VTA to the prefrontal 

cortex, forming the mesocortical dopamine pathway. Critically, these neurons differ in many 

functional properties from more conventional dopamine neurons. Conventional dopamine 

neurons exhibit broad action potentials (action potentials occur over a relatively long period of 

time), low frequency tonic spiking with high-frequency burst firing capacity, and strong post-

inhibitory rebound spiking (cells spike when inhibition is released, without need for additional 

excitation). Lammel, Hetzel, Hackel, Jones, Liss, & Roeper (2008) demonstrated that, contrary 

to prior belief, only neurons in the dorsolateral VTA projecting to the nucleus accumbens shell 

displayed these conventional properties of dopamine cells. Using these conventional properties 

to define dopamine cells might have led to an oversampling of dopamine neurons projecting to 
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the nucleus accumbens shell in past studies of prediction error signaling. Importantly, dopamine 

release in the nucleus accumbens shell seems to display a signed dopaminergic PE, in line with 

many studies which have observed signed PE signaling in groups of dopamine neurons 

selected using conventional electrophysiological properties. 

In contrast, Lammel et al. (2008) showed that dopamine neurons in ventromedial regions 

of the VTA, projecting to medial prefrontal cortex and nucleus accumbens core, have very 

different features. More specifically, these neurons do not show the conventional criteria and 

therefore may not have been selected in previous studies examining prediction errors. These 

neurons fire persistently at much higher frequencies than conventional dopamine neurons and 

can be effectively silenced by inhibition (that is, these neurons do not exhibit post-inhibitory 

rebound spiking). In contrast, inhibition does not silence conventional dorsolateral VTA 

dopamine neurons, which exhibit strong post-inhibitory rebound properties. Furthermore, 

dopamine neurons respond to reinforcement in different ways, depending on where they project 

to. Lammel, Ion, Roeper, & Malenka (2011) showed that rewarding events change excitatory 

strength of dopamine neurons projecting to nucleus accumbens shell, but not those projecting to 

prefrontal cortex. In contrast, aversive stimuli changed the excitatory weights of dopamine 

neurons projecting to prefrontal cortex. These results suggest that a population of conventional 

dopamine neurons, which are likely overrepresented in studies of dopamine signaling, project to 

the nucleus accumbens shell and carry a signed prediction error signal. Meanwhile, populations 

of unconventional dopamine neurons project to the nucleus accumbens core and prefrontal 

cortex, and carry salient, primarily aversive, information. This distinction was shown 

experimentally for the first time by Lammel et al. (2012). Optogenetic stimulation of dopamine 

neurons projecting to nucleus accumbens shell induced conditioned place preference, while 

optogenetic stimulation of dopamine neurons projecting to prefrontal cortex induced conditioned 

place aversion. This study causally implicated separate populations of dopamine neurons in the 
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control of reward and aversion signaling, mediated by signed and unsigned prediction error 

signals respectively. 

Traditionally, dopamine neurons have been selected using a priori identified 

conventional criteria. Recent evidence suggests that these properties are only true of a distinct 

population of dopamine neurons projecting to the nucleus accumbens shell. Importantly, these 

studies have generally identified selected dopamine neurons as carrying a value PE, and 

dopamine release patterns in the nucleus accumbens shell are largely reflective of a value PE 

as well. However, populations of dopamine cells exhibiting less conventional properties 

preferentially project to the nucleus accumbens core and prefrontal cortex. Critically, these 

neurons are excited by aversive stimuli and produce strong conditioned place aversions when 

optogenetically stimulated. This suggests that the population of dopamine neurons projecting to 

prefrontal cortex does not encode value PEs, but instead is maximally sensitive to salient 

(primarily aversive) stimuli. Furthermore, the lack of post-inhibitory rebound in this population of 

dopamine cells suggests that these neurons can be effectively silenced by inhibition. Inhibitory 

GABAergic drive from prefrontal neurons might therefore be capable of inhibiting mesocortical 

dopamine output, therefore exerting top-down control over aversive learning.  

1.7 Imaging Studies of PE Signaling in Humans 

Research methods used in functioning human brains are limited by the need to be non-

invasive and must be augmented using animal studies to draw neurobiologically relevant 

conclusions. For example, direct subsecond measure of dopamine release in the human brain 

cannot be assessed. Furthermore, electrical recording of human subcortical brain activity is 

impossible, except for certain patient populations with implanted recording electrodes. Despite 

these shortcomings, investigating the signaling of prediction errors in human brain activity is 

essential for an algorithmic understanding of human reinforcement learning. Here I review fMRI 

studies of subcortical and cortical oxygenated blood flow, which correlates strongly with neural 

activity in specific brain regions. 
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While research has identified human BOLD activity during reward anticipation and 

delivery (Knutson, Adams, Fong, & Hommer, 2001; Knutson & Cooper, 2005), targeting 

individual brainstem nuclei such as the VTA is a difficult proposition in fMRI research. The VTA 

is the size of a mere two (2) voxels using standard 3T fMRI acquisition templates. In one of the 

first investigations to successfully target human brainstem nuclei (VTA) using 3T fMRI, 

D’Ardenne, McClure, Nystrom, & Cohen (2008) imaged BOLD responses in the VTA during 

reinforcement processing. This study did not use high-field fMRI to acquire high-resolution 

images but instead made clever changes to image acquisition routines that allowed VTA 

imaging, including taking oblique slices that were chosen to include as much of the brainstem as 

possible, using altered normalization routines that have been shown to work better than normal 

routines for small brainstem nuclei, and coupling the pulse sequence to the subject’s heart rate 

to minimize movement artifact from nearby blood vessels. This study showed that the BOLD 

response in VTA was significantly modulated by positive reward prediction errors, but not 

negative reward prediction errors. Therefore, oxygenated blood flow increased for rewards 

greater than expected, but did not decrease from baseline for rewards that were lower than 

expected. The authors note that this likely reflects the “restriction of range” issue noted above – 

most dopamine neurons in VTA fire at such low basal levels that a decrease from baseline is 

not detectable. This study did not identify any VTA correlate of negative reward prediction 

errors, or any VTA response to aversive events. The authors suggest that the number of cells in 

VTA signaling aversive events (approximately 30%) does not cause enough change in BOLD 

signal to be detected by fMRI imaging. Schott et al. (2008) conducted an innovative study 

examined fMRI imaging of brain activity and PET imaging of [11C]raclopride (a dopamine 

receptor agonist that is displaced by dopamine binding) displacement in human nucleus 

accumbens during reward anticipation. Therefore, this study measured oxygenated blood flow in 

VTA and dopamine binding in NAcc. Note that these two sessions were necessarily conducted 

separately. Furthermore, because of the slow dynamics of [11C]raclopride binding and 
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displacement, this study was unable to examine real-time dopamine binding dynamics. 

However, VTA activity correlated positively with decrease in [11C]raclopride binding in nucleus 

accumbens, suggesting that the same neural mechanisms underlying VTA/NAcc interactions in 

animal models are observable in human brain imaging studies. 

fMRI studies examining negative or aversive prediction errors have largely supported 

evidence from animal models. Seymour et al. (2005) examined appetitive and aversive signaling 

using a negative reinforcement task. As predicted based on rat models, avoidance of pain gave 

rise to a positive prediction error-like signal in midbrain striatal regions. Furthermore, delivery of 

aversive stimuli resulted in a negative prediction error-like signal in orbitofrontal and anterior 

cingulate cortices. This corresponds to previous animal evidence in suggesting that mesolimbic 

dopamine projections from VTA might carry positive prediction error information to striatum, 

while mesocortical dopamine projections might carry negative or aversive prediction error 

signals to prefrontal cortex. As further support of this theory, Metereau & Dreher (2012) showed 

that activity in human ACC and anterior insula covaried with a salience prediction error rather 

than a value prediction error using appetitive and aversive juice. This pattern was confirmed in a 

recent meta-analysis of neuroimaging studies. Garrison, Erdeniz, & Done (2013) used activation 

likelihood analysis to examine studies of human prediction error signaling. This study showed 

that positive (reward) prediction errors was largely confined to striatal areas, as expected based 

on the anatomy of the brain mesolimbic dopamine pathway (e.g., NAcc shell). Furthermore, 

negative (aversive) prediction errors were largely associated with activity in prefrontal cortex 

and habenula (which projects to ventral VTA and carries information about aversive events). 

Numerous fMRI studies have implicated striatal BOLD signaling in reward prediction 

error signaling in the human brain. Most of these studies do not have sufficient spatial resolution 

to image individual subcortical nuclei. However, these findings generally agree in showing 

subcortical BOLD increase in line with a value prediction error, as expected based on previous 

evidence from rat brain studies (NAcc core). Furthermore, human prefrontal cortex oxygenated 
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blood flow is strongly related to aversive stimuli and reflects negative prediction errors. These 

findings agree with previous animal research and suggest that separate populations of 

dopamine neurons originating in VTA and projecting to striatum and prefrontal cortex code 

reward and aversive prediction errors respectively.  

1.8 Electrophysiological Studies of PE Signaling in Humans 

While human electrophysiology does not have the spatial resolution of fMRI or the ability 

to image subcortical structures, EEG and MEG have been used extensively to study 

reinforcement learning and prediction error signaling, as well as to make inferences about 

dopamine activity. The general approach that is used in this line of research is to measure 

prefrontal neural activation during a task or activity that has a known effect on subcortical 

dopaminergic nuclei, such as reward anticipation and delivery. In this section I review EEG and 

MEG studies which record electromagnetic activity from the surface of the scalp, and therefore 

measure signals on the same millisecond time scale as invasive recording of dopamine neuron 

electrical activity. 

Most EEG studies of reinforcement have examined event-related potentials (ERPs; 

averaged EEG), with a particular focus on the error-related negativity (ERN) and feedback-

related negativity (FRN). These components of the event-related potential occur following 

behavioral errors and valenced feedback, respectively, and are dominant over prefrontal cortical 

regions. Early theories of the ERN and FRN (known as reinforcement learning FRN theory, or 

RL-FRN) posited that these deflections in the ERP were due to dopamine activity and reflected 

reward prediction errors. Holroyd & Coles (2002) posited that dopamine chronically inhibits the 

apical dendrites of motor neurons in anterior cingulate cortex, and that changes in these 

negative ERP deflections could be due to a pause in the baseline release of dopamine from 

VTA. This pause in baseline release of dopamine would be expected if VTA conveys a signed 

negative prediction error to anterior cingulate cortex. Importantly, Nieuwenhuis, Yeung, Holroyd, 

Schurger, & Cohen (2004) showed that the amplitude of the FRN depends on the difference 
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between expected and actual outcomes and was most negative for unexpected poor outcomes 

in positive reinforcement conditions (reward omission), in line with a reward prediction error 

signal. However, neither of these studies included aversive conditions. A later study by 

Holroyd’s team (Holroyd, Pakzad-Vaezi, & Krigolson, 2008) reinterpreted the RL-FRN 

hypothesis under the idea that the potential difference between correct and error outcomes 

might actually represent a positivity in the waveform induced by delivery of reward, leading 

some researchers to refer to this potential instead as the Reward Positivity. This change in the 

theory did not require a complete overhaul of the dopaminergic hypothesis of the FRN, as the 

authors still contend this signal results from a reward signal conveyed by conventional 

dopamine neurons. Notably, this interpretation requires physiological evidence that DA neurons 

forming the mesocortical pathway actually transmit reward signals, which is lacking in animal 

studies reviewed above.  

Recent research has contradicted the RL-FRN hypothesis. Talmi, Atkinson, & El-Deredy 

(2013) recorded EEG while participants completed a combined positive and negative 

reinforcement task. For positive reinforcement conditions, a secondary reinforcer was used 

(money) and for negative reinforcement a primary reinforcer was used (pain). As expected, FRN 

amplitude was greater for omission of reward than for reward delivery, since dopamine neuron 

firing in VTA decreases from baseline for omission of an expected reward. Unexpectedly, FRN 

amplitude was greater for omission of an aversive painful stimulus than for avoidance of the 

aversive stimulus. If the FRN represents a cortical correlate of a dopaminergic prediction error, 

then this would suggest that the dopamine neurons projecting to prefrontal cortex increase firing 

for delivery of an aversive stimulus compared to avoidance of a negative stimulus. This is in line 

with rat research outlined above, which suggests that the major dopaminergic inputs to 

prefrontal cortex are preferentially excited by salience prediction errors. Therefore, both reward 

and punishment delivery would be encoded by an increase in unconventional VTA neuron firing 

which is conveyed to prefrontal cortex. The results from Talmi, Atkinson, & El-Deredy (2013), as 
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well as basic animal research detailed above, fundamentally contradict the idea that dopamine 

release in PFC should follow a value function, an idea that is central to the RL-FRN hypothesis. 

Several studies have since replicated and extended the results of Talmi, Atkinson, & El-

Deredy (2013). Huang & Yu (2014) examined the FRN in a prediction paradigm which instructed 

participants of the likelihood of a win, then showed the outcome of that trial (no response was 

required). In line with Talmi et al. (2013), FRN amplitude was greater for omission of reward 

than for reward delivery but was also greater for punishment delivery than punishment omission. 

Recently, our lab replicated and extended these results (Rawls, Miskovic, Moody, Lee, Shirtcliff, 

& Lamm, under review). This study included a control condition, which primed the participant 

with an expectation of zero reinforcement value and where the outcome was always zero. As 

expected, there was no difference in FRN amplitude for correct and error feedback when the 

feedback did not include a prediction error. This result suggests that the FRN is driven by a 

conveyed dopaminergic salience prediction error and is not merely the result of error monitoring. 

Sambrook & Goslin (2014) conducted a study where they parametrically modulated prediction 

error and reported significant salience prediction errors in early FRN time windows and mixed 

evidence for value prediction errors across multiple time windows. Furthermore, Sambrook & 

Goslin (2015) conducted a meta-analysis of published ERP studies using great grand averages, 

a technique which measured published ERP waveforms directly and averaged waveforms for 

conditions across many individual studies. These results suggest influences of salience 

prediction errors across much of the ERP waveform including the FRN time period, as well as 

influences of value signals which sometimes overlapped with salience signals. These more 

recent results are in agreement with known neurobiology and so represent a step forward from 

early theories suggesting the FRN represents a signed dopaminergic prediction error, e.g. 

Holroyd & Coles, 2002. However, the relationship between dopamine neurotransmission and 

FRN prediction error signaling is at this point only theoretical and has never been critically 

examined.  
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1.9 The Neglected Role of Time in Dopamine Reinforcement Signaling 

While Sutton & Barto’s (1987) computer science focused class of TD-RL theories is a 

dominant perspective in the study of reinforcement learning, the idea of time, as well as trial-by-

trial variations in brain activity, is completely eschewed in traditional neuroscience studies which 

rely on the averaging of many trials to obtain an accurate measure of brain activity related to 

reinforcement delivery or omission. Despite the omission of time in traditional neuroscience, 

studies have demonstrated a strong role of the passage of time on dopamine release, which 

changes the weights of learning outcomes over time. For example, Niv, Daw, Joel, and Dayan 

(2006) generate an average reinforcement learning model in which subjects choose both what 

action to perform and what latency to perform it at based on a combination of previous task 

outcomes weighted by time. This important application of DA theories to free-response tasks 

specifically implicates a change in learning signals both over time and momentarily (trial-by-

trial), and makes a strong case for the separation of DA signals into tonic (slow) and phasic 

(momentary) components. Specifically, DA concentrations are predicted to change slowly over 

time as an organism learns, in addition to momentary changes in DA concentration following 

individual reinforcing events. Furthermore, TD-RL models suggests that a PE signal is 

generated whenever an organism’s expectation of reward changes (Sutton & Barto, 1987), 

which requires a slow methodical change in DA signaling over time to achieve reinforcement 

learning.  

The idea that DA signals should change slowly over time as an organism learns (tonic) is 

supported by studies completed by Montague, Dayan, Person, & Sejnowski (1995) and 

Montague, Dayan, & Sejnowski (1996) focusing on the insect equivalent of DA, octopamine. 

These results indicated that in insect models, octopamine release closely matched the 

predictions of the TD-RL model. Specifically, octopamine seems to signal phasic (momentary) 

changes in outcome expectation based on previous outcomes that over time progress to slow 

(tonic) changes in octopamine levels as insects learn what to expect. Niv (2007) integrates TD-
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RL theories of dopamine in learning to suggest that slow (tonic) changes in DA concentration 

integrate cost-benefit action analyses in determining the speed of responses, necessarily 

neglected in all studies that examine only the response an organism gives (correct or incorrect) 

but not the speed of that response. Specifically, phasic shifts in DA concentration immediately 

following reinforcing outcomes might change learning rates, while over time, tonic changes in 

DA concentration might facilitate learned aspects of task performance including reaction times.  

Indeed, Beeler, Daw, Frazier, & Zhuang (2010) show important evidence linking slow 

changes in tonic DA concentrations to the exploitation of reward learning. Beeler et al. (2010) 

examined the behavior of hyperdopaminergic knockout mice in a semi-naturalistic instrumental 

learning task. This analysis demonstrated that hyperdopaminergic mice displayed normal 

learning from recent outcomes. That is, knockout mice correctly learned to associate cues and 

outcomes (measured as correct and incorrect responses on lever presses). However, these 

knockout mice instead showed a diminished ability to exploit that learning over time (measured 

as a slower adaptation of responses following learning). Specifically, this predicts that tonic 

changes in DA over the course of learning might shift how well or rapidly an organism exhibits 

learned behaviors over the course of a task, rather than whether or not the organism learns the 

correct response. These separable aspects of DA, or the idea that momentary (phasic) changes 

in DA concentration should change learning of task parameters while slow (tonic) changes in 

DA concentration should alter how rapidly an organism uses the information it has learned, have 

yet to be examined together in human subjects. 

A computational model of midbrain medium spiny neurons (Guthrie, Myers, & Gluck, 

2009) that incorporates tonic levels of DA, therefore considering changes in DA level over time 

rather than momentary or phasic dopamine shifts based solely on outcome, supports 

hypotheses suggesting that for learning to occur, DA levels must change tonically over time. 

This model was able to reproduce 1) the behavior of organisms with normal levels of DA, 2) the 

altered learning of DA deficient Parkinsonian patients, and critically 3) the improvement in DA 
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dependent learning experienced by medicated Parkinsonian patients, providing strong evidence 

of the importance of tonic DA levels in reinforcement learning over time. Parker, Alberico, Miller, 

& Narayanan (2013) demonstrate that expectancy-based reaction time shifts over the course of 

a task critically depend on the binding of DA in PFC, providing further evidence that response 

time, and not just choice, is heavily influenced by outcome expectancy effects. Importantly, 

Bryden, Johnson, Tobia, Kashtelyan, & Roesch (2011) demonstrated that spiking rate of 

neurons in the anterior cingulate cortex of rats signals PEs, but also the need for enhanced 

neural resources following unexpected outcomes, specifying a role of prefrontal DA 

mechanisms in enhancing learning-based activity following outcomes which are beyond those 

expected. This generates the hypothesis, critical to the current work, that cingulate-generated 

potentials should weight learning on future trials as a function of task outcomes. This change in 

activity should compound over time as learning improves and tonic DA levels in ACC change. 

This work also suggested that the most salient or attention-grabbing outcomes should weight 

future learning the most.  

Specific to learning outcomes dependent on PFC activation, Rinaldi, Mandillo, Oliverio, 

and Mele (2007) showed that DA antagonists administered to PFC selectively impaired spatial 

learning that occurs over time in mice. This type of learning, which depends on time but not on 

PEs, therefore seems to selectively depend on tonic DA concentration in PFC. Wood, Simon, 

Koerner, Kass, & Moghaddam (2017) showed a role of real-time action strategy deployment in 

pursuit of a reward in VTA, contrary to the popular belief that real-time action selection depends 

solely on PFC-basal ganglia interactions. This suggests, among other things, that VTA DA 

release provides a crucial computational substrate that allows DA neurons to function in the 

real-time control of behavioral output. A convincing account of the distinction between tonic and 

phasic DA release in PFC is shown by Ellwood et al. (2017). This study shows that tonic (long-

lasting) stimulation of VTA dopaminergic neurons projecting to PFC stimulates maintenance of 

previous action strategies, while phasic (momentary) DA release in PFC instead stimulates 
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behaviors deviating from previously learned sequences. Stopper, Maric, Montes, Wiedman, & 

Floresco (2014) demonstrate that causal override of phasic DA signals redirects action selection 

during decision making, rather than cementing previously learned outcomes in behavior. 

Furthermore, Howe, Tierney, Sandberg, Phillips, & Graybiel (2013) demonstrate that prolonged 

(tonic) DA signaling in striatum calculates both the temporal proximity and the expected 

outcome of rewards to be given in the future. This result is critical for the current study, as in 

human reinforcement learning studies, rewards are not generally administered until the 

completion of the study, therefore constituting a distant, rather than proximal outcome. 

Together, this set of intriguing results generates a hypothesis that tonic stimulation of DA 

neurons projecting to PFC facilitates repetition of previously learned action sequences with 

increased speed, while phasic stimulation of DA projections to PFC facilitates slower but more 

exploratory behaviors in an environment. Note that the distinction of tonic vs. phasic activity is 

separate from the distinction of signed vs. unsigned PE. Rather, knowing that DA projections to 

PFC carry salient, and primarily aversive, information allows the hypothesis that salient aversive 

stimuli will increase both momentary (phasic) DA levels in PFC, as well as slowly changing tonic 

DA levels in PFC over time. Meanwhile, rewarding outcomes should stimulate change in DA 

release (both momentary, and compounding over time) in striatal regions. More specifically, the 

distinction between tonic and phasic shifts in DA concentration is about the time scale of 

signaling, not the PE content of the signal.  

1.10 Current study: prefrontal cortical modulation of learning 

The topic of whether and how the FRN reflects a reinforcement learning signal is hotly 

debated. The classical theory of the reinforcing properties of the FRN (Holroyd & Coles, 2002) 

suggest that the FRN is influenced by a signed prediction error generated by phasic dopamine 

release. This theory is generally vague about the biological underpinnings of these signals. 

Recent evidence suggests that neurons generating signed prediction errors do not project to 

prefrontal cortex (Lammel et al., 2008; Lammel et al., 2011), which is in line with recent 
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evidence that the FRN represents a salience prediction error (Huang & Yu, 2014; Rawls et al., 

under review; Sambrook & Goslin, 2014; Sambrook & Goslin, 2015; Talmi et al., 2013). 

However, despite the neurobiological plausibility of the theory that the FRN reflects salience 

signals transmitted from VTA via the mesocortical dopamine pathway, the relationship of FRN 

PE signaling and dopamine neurotransmission has never been examined. More importantly, 

previous research on the reinforcement learning significance of the FRN completely disregards 

the importance of changes in tonic (slow) DA release in PFC, as the averaging of trials does not 

allow us to examine tonic (slow) changes in PFC activation over time as a human learns. 

Averaging over trials, and therefore nullifying the change in DA levels over time, allows only an 

examination of momentary (phasic) DA signaling in PFC but averages over time and obscures 

slow changes in DA concentration. Specifically, by averaging over all like trials (for example 

reward omission, or reward delivery), tonic (slow) changes in DA are averaged over, leaving 

only the phasic (momentary) DA signal immediately following reinforcing events. To examine 

how slow (tonic) changes in PFC DA concentration might influence the course of reinforcement 

learning, different methods are necessary. I suggest that a new approach is necessary to 

investigate the extent to which tonic (slow) changes over time of DA in PFC. Instead of the 

standard approach in EEG studies, which involves averaging of brain responses over many 

trials, I instead fit computational models to single trials of feedback-related cortical brain signal 

that allow for the passage of time to be included as a quantitative predictor in brain activity.  

1.10 Hypotheses 

Our hypotheses are that 1) the FRN will be sensitive to both reinforcement type (positive 

or negative) and prediction error. I expect a pattern of results indicating a salience prediction 

error – FRN activation should be less negative (more inhibited) for unexpectedly bad and 

unexpectedly good results compared to expected results, in both positive and negative 

reinforcement. Furthermore, based on the aversion specificity of dopamine neurons projecting 

to prefrontal cortex, I expect less negative (more inhibited) FRN activation for negative 
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reinforcement than for positive. Most importantly, I hypothesize that a single-trial analysis using 

trial number (i.e. the passage of time across the duration of the task) as a predictor of the FRN 

will reveal 2) an effect of change over time (trial number) on the FRN, which would concur with 

evidence suggesting that tonic changes in DA concentration influence the PFC representation of 

reinforcement learning. This slow change in PFC signal should reflect learning over time and be 

preferentially driven by salience, rather than value, of delivered outcomes. Finally, I hypothesize 

that 3) time-dependent changes in the FRN will drive faster responding over the course of the 

task, while phasic violations of outcome expectation will instead facilitate slower responding. 

This is in line with animal studies detailed above demonstrating that tonic changes in DA level in 

PFC cement previously learned action strategies and contributes to faster repetition of learned 

actions, while phasic shifts in PFC DA levels instead facilitate slower and more exploratory 

behavior. These hypotheses are consistent with research relating slow changes in tonic levels 

of DA to faster responses in animals. 

1.11 Importance and theoretical impact of proposed study 

There is debate about whether the FRN reflects a salience or value PE, and whether this 

prediction error is influenced by dopamine or not. Notably, this debate has not yet extended to 

whether this signal responds primarily to tonic or phasic DA release in PFC. Previous results 

from our lab indicate that the FRN reflects a salience PE, but these results were derived in the 

standard way, i.e. by averaging over trials and therefore disregarding the passage of time. 

Salience PEs and value PEs are signaled by dopamine in a projection-specific manner (VTA to 

PFC = salience; VTA to NAcc shell = value), and these signals are impacted by slow changes in 

tonic DA concentration over time. Specifically, I expect that both momentary (phasic) and slow 

(tonic) changes in level of DA in PFC should depend on salience (not value) of delivered 

reinforcing outcomes. This prediction utilizes basic neuroscience research showing that 

dopamine neurons projecting to PFC signal primarily aversive salience, and is in line with our 

hypothesis that the FRN reflects a dopaminergic salience prediction error. Furthermore, I test 
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the relationship between the passage of time (trial number) and FRN signaling and hypothesize, 

based on basic animal research detailed above, the FRN (as a measure of PFC activation) 

should respond not only to phasic (trial-by-trial fluctuations in DA level) but also to tonic changes 

in DA level (which occur over the course of time). I suggest that both tonic and phasic task-

based information is integrated in cortical DA signaling, which should speed the acquisition of 

reinforced behaviors while also facilitating action change when needed. I predict that this 

learning effect will be strongest following aversive outcomes, again in accordance with basic 

studies demonstrating that the mesocortical DA pathway primarily carries aversive information. 

Understanding the representation of expectancy violation and time-based learning in the 

prefrontal cortex is key to understanding many disorders revolving around reinforcement and 

dopaminergic dysfunction, such as addiction. Furthermore, these results will inform basic 

theories about how reinforcement signals are communicated through the brain. 

 

2 Methods 

2.1 Participants 

Participants were 59 undergraduate students (37 female, mean age 19.2 [SD 2.06], 2 

left handed) who completed the study after giving informed consent. Participants were excluded 

from signing up for the study if they had a self-reported current psychiatric diagnosis, 

uncorrected visual impairments, or were currently using psychoactive medication. All 

participation exclusion criteria were listed on the online recruitment platform used by the 

University of Arkansas Department of Psychological Sciences, but were not verified via clinical 

interview or otherwise. All procedures described in this study were approved by the University of 

Arkansas Institutional Review Board (Protocol # 1708016049). After recruitment, one participant 

was excluded due to failure to understand task instructions and two additional participants were 

excluded from data analyses due to having too few trials in one or more conditions to analyze (< 

30 trials). All data analyses were conducted on a sample of 56 participants. Participants 
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received course credit for their time in the laboratory (6 credit hours, 8 total required for General 

Psychology students). Additionally, participants were informed they would be paid a cash sum 

based on how many points they accrued throughout the reinforcement task. Participants 

received one US dollar ($1) for every 2000 points they accrued, and on average participants 

received a bonus of $7 at the end of the study (minimum $2, maximum $12). 

2.2 Reinforcement learning task 

Participants completed a reinforced flanker which was a modification of the flanker task 

(Eriksen & Eriksen, 1972) using arrow stimuli (Figure 2). At the beginning of every trial, a 

fixation cross was presented. Following the initial fixation, participants were shown a black-and-

white shape, signifying whether the trial was positive or negative reinforcement. Negative and 

positive reinforcement were presented in pseudo-random order, allowing us to examine both 

changes over time in behavior and brain function as well as the phasic shifts due to unexpected 

reinforcement outcomes in a trial-by-trial fashion. This shape disappeared after 500 ms and was 

replaced with a fixation cross (+) that lasted 500 – 700 ms.  A set of congruent (< < < < < or > > 

> > >) or incongruent (< < > < < or > > < > >) arrows were then shown for 100 ms, followed by a 

fixation cross lasting from 900 – 1100 ms. Valence feedback (correct or incorrect) was shown 

for 500 ms, followed by a fixation cross lasting 500 – 700 ms. Finally, point feedback was shown 

for 1000 ms.  

Importantly, the average return for correct positive reinforcement trials was 50 points, but 

the actual return varied linearly from 20 points to 80 points on a trial-by-trial basis. Likewise, the 

average return for correct negative reinforcement trials was zero points, but the actual return 

varied from -30 to 30 points. Correct answers always resulted in better outcomes than incorrect 

answers. Before participants began, they completed 50 trials for practice. During practice trials, 

the outcome was always as expected (i.e. for positive reinforcement correct answers resulted in 

a gain of 50 points, and for negative reinforcement correct answers resulted in no loss of 

points). Participants could not move on to the main task until they demonstrated understanding 
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of the task during the practice, measured as an accuracy rate of 80% or above during practice. 

One participant was excluded from the study at this point for failure to understand task 

instructions (could not pass the practice after 3 attempts or 150 trials). Four additional 

participants (out of the 56 included) required a second attempt on the practice block in order to 

achieve 80% or greater accuracy. Participants responded using their left thumb (for left arrow 

targets) or their right thumb (for right arrow targets). Participants completed 960 trials of this 

task, divided into 16 blocks of 60 trials each. Completion of the reinforcement task required 

approximately 90 minutes. In the interest of presenting a minimal number of a priori defined 

analyses and hypotheses, only the EEG time-locked to the final point feedback is considered as 

a dependent variable in this manuscript. I do not analyze EEG time-locked to any stimuli other 

than the final point feedback. The current analysis was further restricted to only correct trial 

feedback, in order to remove the confound of error / performance monitoring on PE signaling. 

Note that typical reinforcement learning studies of the FRN require correct answers to provide 

“good” outcomes, and incorrect answers to provide “bad” outcomes, leading to the confounding 

of reinforcement processing and performance monitoring. Since many of the brain regions 

implicated in reinforcement signaling also respond to performance errors, the typical design of 

these studies severely restricts the interpretation of observed brain activity as a reinforcement 

learning signal. By creating an expectation of average outcome in the practice and then 

systematically providing more or less points than expected on correct trials, I separate the effect 

of PE (was it better or worse than expected?) from the effect of error monitoring (was the 

outcome correct or incorrect?).  
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Figure 2. Task diagram for the modified reinforcement flanker paradigm. Participants were cued 
as to whether the current trial was to be positive or negative reinforcement with a white square 
or a white circle, respectively. Participants then had to respond to a flanker arrow stimulus which 
was either congruent or incongruent (congruent and incongruent trials were averaged over for 
the current manuscript). Only correct trials were analyzed, and participants were shown correct 
feedback on every trial prior to the point feedback being shown. Finally, participants were given 
some amount of points which was on average +50 for positive reinforcement and +0 for 
negative reinforcement. The crucial task manipulation was that every trial, the amount of points 
given deviated slightly from the overall mean expectation, generating outcomes which were 
worse-than-expected or better-than-expected. 

 
2.2 EEG processing 

EEG were sampled at 1000 Hz using a 129-channel EGI sensor array referenced to 

vertex (Philips EGI, Inc.). Recording began after impedances were reduced below 50 kΩ. Data 

were processed using EEGLAB 15 (Delorme & Makeig, 2004) and MATLAB 2017 (Mathworks). 

Continuous data were downsampled to 125 Hz with anti-aliasing, low-pass filtered at 30 Hz 

using a zero-phase FIR filter, and high-pass filtered at 0.1 Hz using a zero-phase FIR filter. Bad 

channels were removed using built-in eeglab functions if the channel SD was 4 or greater. 

Copies were made of each dataset, which were high-pass filtered at 1 Hz using a zero-phase 
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FIR filter, in preparation for computing independent components analysis (ICA; Makeig, Jung, 

Bell, & Sejnowski, 1995). All data were epoched into 3 second windows surrounding point 

feedback onset (from -1000 ms before to 2000 ms after). Infomax ICA was computed on the 1 

Hz filtered dataset (Debener et al., 2010). Bad channels were not interpolated before running 

ICA. Artifactual independent components were detected using the SASICA plugin (Chaumon, 

Bishop, & Busch, 2015), which detected artifact components using a combination of three 

methods: 1) autocorrelation statistics, 2) focal component activity, and 3) routines from the 

ADJUST plugin (Mognon, Jovicich, Bruzzone, & Buiatti, 2011). Selected components were 

verified by visual inspection and removed from the data. ICA weights and artifact components 

calculated in the 1 Hz high-pass filtered dataset were copied to the 0.1 Hz high-pass filtered 

dataset; all further analyses were performed on the 0.1 Hz filtered dataset. Epochs containing 

fluctuations with voltage exceeding ±125 µV were detected and removed as well. Removed 

channels were interpolated using spherical splines and data were rereferenced to the montage 

average. Two subjects were excluded from all analyses due to having fewer than 30 clean trials 

in one or more conditions. 

2.3 Conventional trial-averaged analyses 

In order to render the results of this study comparable with the bulk of previous research, 

which used ERPs averaged over trials, I present initially a trial-averaged analysis. I split trials 

according to reinforcement type (positive or negative) and PE type (better or worse than 

expected). I analyzed the average behavior (RTs) after trials of each type in order to examine 

task-related response adaptation (learning) effects. I analyze the averaged ERP following the 

actual outcome (point gain/loss) cue for trials of each of the four trial types (positive/negative, 

better/worse) as well. The ERP was baseline corrected for the 200 ms preceding feedback 

presentation and was examined as the mean voltage from 250 – 350 ms at sensor FCz in line 

with standard FRN analysis procedure. All analyses were conducted in SPSS 26 using 2 

(reinforcement type: positive or negative) X 2 (outcome: better or worse than expected) 
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repeated-measures ANOVAs. Any significant interactions were examined using the SPSS 

emmeans command. Since there were no covariates in this analysis this command provides the 

same result as if serial t-tests were used to examine the simple main effects. No multiple 

correction procedure was used in SPSS as SPSS does not apply a correction for any factors 

with fewer than three levels in an ANOVA (i.e. the results would be exactly the same if a 

Bonferroni correction was applied within SPSS). 

2.4 Single-trial analysis 

2.4.1 Single-trial behavioral analysis: changes in behavior over time 

Single-trial analysis of behavior was initially conducted within each subject to examine 

task-related shifts in reaction times corresponding to reinforcement outcomes. This analysis was 

specifically intended to isolate effects of tonic vs. phasic task-related changes in learning rate. 

That is, within individual subjects, I sought to examine shifts in reaction time over the course of 

the task (tonic), following various magnitudes of prediction error (phasic). The specific task 

manipulation concerned PE signaling in positive and negative reinforcement conditions, during 

better or worse than expected outcomes, as a function of continuous prediction error. Finally, 

differences in learning were incorporated by use of a regressor for trial number (i.e. time on 

task). Therefore, I examined the reaction time in the trial following prediction error presentation 

in the task as a function of task constraints.  

I began by controlling for sources of conflict monitoring or error monitoring that could 

influence task performance. I removed incorrect trials and trials following incorrect trials from 

consideration due to the high performance rate in the task and the fact that errors influence 

learning (performance monitoring control). Next, I fit single-trial robust regression (O’Leary, 

1990) to within-subject RTs for each of four task conditions (positive reinforcement better-than-

expected outcome, positive reinforcement worse-than-expected outcome, negative 

reinforcement better-than-expected outcome, and negative reinforcement worse-than-expected 

outcome), as the task conditions are categorical (Cohen & Cavanagh, 2011). This regression 
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equation was used to remove the influence of flanker congruency for the two flanker stimuli 

preceding the RT, to control for the influence of conflict monitoring & conflict adaptation on the 

ERP. This equation also included the continuous PE value returned on the previous trial, as well 

as the reinforcement cue from the previous trial (positive or negative reinforcement cue) to 

control for the context-dependent nature of the FRN. The studentized residuals of this model 

were returned for each subject and single-trial behavioral analysis was completed for each 

subject using a robust regression model fit to these residuals (RTs controlled for monitoring 

influences). 

The main regression model of interest was a within-subjects model predicting reaction 

times within each of four conditions (positive reinforcement better-than-expected outcome, 

positive reinforcement worse-than-expected outcome, negative reinforcement better-than-

expected outcome, and negative reinforcement worse-than-expected outcome). This allows 

further model comparison between conditions via examination of beta weights. The regression 

used a linear combination of PE (continuous linear variable), and trial number (i.e. time, ranging 

from 1 – 960), as well as an interaction of the two terms. Time and PE were z-scored before 

entering them in the regression so that the magnitude of trial number did not obscure that of PE 

(maximum 960 vs. maximum 80).  All single-trial PE values were orthogonalized by the actual 

outcome value to ensure that any detected effects correspond to a true effect of PE. Note that 

the ability to fit precise models such as this is a key feature of single-trial within-subject 

regression analysis as this level of specificity and control is impossible to achieve in a trial-

averaged analysis. 

This model was fit to predict studentized residual RTs in the trial immediately following 

the prediction error outcome, in order to separate influences of trial number over the task and 

expectancy violations on response times. Beta weights from within-subject robust regression 

can be assumed to be Gaussian by the central limit theorem, and therefore were subjected to t-

tests against a null hypothesis mean of zero, i.e. no relationship between the regressor and 
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reaction times. Each t-test proceeded with 53 degrees of freedom. Figure 3 indicates the task 

design and the equations used for single trial analyses. 

 

 
Figure 3. Regression model diagram for the reinforcement task. Single-trial modeling proceeded 
separately for positive and negative reinforcement, and worse-than expected vs. better-than-
expected trials, resulting in four models for the RT and four models for the ERP. I used robust 
regression to model out all unwanted effects in a first control step while returning studentized 
residuals of RT and ERP. Control effects are shown with a yellow border. A second, meaningful 
analysis was conducted by using robust regression to fit all parameters of interest to both the 
single-trial RT and ERP. Finally, RTs were examined using stepwise regression as a function of 
task constraints, and as as a function of the ERP. This third step formally tests whether the ERP 
predicts reinforcement learning effects in this task. 
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2.4.2 Single-trial EEG analysis framework 

For each participant, the single-trial FRN was measured at a cluster of mediofrontal 

sensors (radius 6 cm) centered on FCz (sensor 6 on the EGI cap). I restricted single-trial 

analyses to a cluster of neighboring prefrontal sensors based on standard measurement 

locations for the FRN. Since trial number resulted in positive beta weights at occipital sensors, 

this prevented the spurious selection of occipital sensors for FRN analyses. The single-trial FRN 

values were submitted to the same control analysis as the RT values described above, with the 

exception that control values following the FRN were excluded as they had not occurred yet 

(trial n). I then applied the regression model of interest to the single-trial ERPs from 100 – 600 

ms post-feedback. For each subject, the mediofrontal sensor showing the greatest cumulative 

R2 was selected for further analysis as in (Bieniek, Frei, & Rousselet, 2013; Rousselet, Husk, 

Pernet, Gaspar, Bennett, & Sekuler, 2009; Rousselet, Gaspar, Pernet, Husk, Bennett, & 

Sekuler, 2010). The regression model applied to the EEG yields b values for each time point 

that can be assumed to be Gaussian by the central limit theorem and were therefore tested 

across subjects using two-tailed t-tests at each time point, followed by correction for multiple 

comparisons using Benjamini & Yekutieli’s (2001) false discovery rate with an alpha of .05. I 

tested for condition differences in significant regression results using a series of 2 X 2 repeated 

measures ANOVAs (one for each time point from 96 – 600 ms, sampled at 125 Hz, therefore 64 

ANOVAs). Significant ANOVA effects representing condition differences (due to reinforcement 

type or better vs. worse outcomes) were further examined using paired t-tests with 53 degrees 

of freedom. 

2.4.3 Prediction of reinforcement learning over the course of the task 

I fit a final model that predicted residualized RTs (calculated as described above) using a 

stepwise regression to assess whether mediofrontal activity following feedback presentation 

predicts reaction time in the following trial. The first step of this regression was the same as for 

the behavioral analysis, that is, the equation predicted controlled RTs as a function of the 
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previous PE and the previous reinforcement type. The second step of this equation entered the 

single-trial feedback-locked EEG as a regressor, to determine if mediofrontal activity predicts 

following-trial response time over and above the task itself. Again, this regression model applied 

to predict RT using the EEG yields b values for each time point that can be assumed to be 

Gaussian by the central limit theorem and were therefore tested across subjects using two-

tailed t-tests at each time point, followed by correction for multiple comparisons using Benjamini 

& Yekutieli’s (2001) false discovery rate with an alpha of .05. 

 

3 Results  

3.1  Conventional (trial-averaged) results 

3.1.1 Trial-averaged analysis of reaction times 

Reaction times were grouped according to which of the four different trial conditions they 

followed, producing four mean RTs for each participant (RTs following positive reinforcement 

better-than-expected outcomes, RTs following positive reinforcement worse-than-expected 

outcomes, RTs following negative reinforcement better-than-expected outcomes, and RTs 

following negative reinforcement worse-than-expected outcomes). Mean RTs following each of 

four trial types were analyzed according to a 2 (reinforcement type: positive or negative) X 2 

(outcome: better or worse than expected) ANOVA. Results indicated a main effect of outcome 

(better or worse), F(1,53) = 9.56, p = .003, ηp2 = .15, which was subsumed by a significant 

interaction between reinforcement type and outcome, F(1,53) = 15.86, p = .0002, ηp2 = .23. 

Results of post hoc analyses confirmed that, for better-than-expected outcomes, RTs were 

faster following positive reinforcement trials compared to negative reinforcement trials, p = .009. 

The opposite was true worse-than-expected outcomes: RTs were faster following negative 

reinforcement trials compared to positive reinforcement trials, p = .003. Within reinforcement 

type, only positive reinforcement showed a significant difference. RTs following better-than-

expected outcomes were faster than RTs following worse than expected outcomes, p = 4e-6. 
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This difference was not significant for negative reinforcement trials, p = .31. Graphical depiction 

of RT effects are shown in figure 4. 

 

 
Figure 4. Trial averaged reaction times. Results indicated that, following better-than-expected 
outcomes, RTs were faster following positive reinforcement trials than following negative 
reinforcement trials. This effect was reversed following worse-than-expected outcomes. Finally, 
RTs were slower following worse-than-expected outcomes than following better-than-expected 
outcomes in positive reinforcement conditions only. 

 

3.1.2 Conventional analysis of FRN amplitude 

Similar to the RT analysis, FRN activations were grouped according to which of the four 

different trial conditions they followed  and analyzed according to a 2 (reinforcement type: 

positive or negative) X 2 (better-than-expected or worse-than-expected outcome) ANOVA. 

Results indicated a main effect of outcome (better-than-expected or worse-than-expected), 

F(1,53) = 14.05, p = .0004, ηp2 = .21, which was subsumed by a significant interaction between 

reinforcement type and outcome, F(1,53) = 13.72, p = .001, ηp2 = .21. Results of post hoc 

analyses showed that the influence of outcome was only apparent for negative reinforcement 

outcomes. Negative reinforcement outcomes that were better-than-expected resulted in a more 

negative FRN compared to worse-than-expected, p = 5e-5. This indicates a reverse effect of PE 
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on FRN amplitude for negative reinforcement (that is, the FRN is more negative for better-than-

expected than worse-than-expected outcomes in negative reinforcement), which is in line with 

the majority of recent research on the FRN. For worse-than-expected outcomes, FRN amplitude 

was more negative for positive compared to negative reinforcement trials, p = .0006. 

Furthermore, the effect of PE on the FRN was non-significant, which I attribute to the unique 

task manipulation which allows for a worse-than-expected reward to be delivered, as opposed 

to standard task designs which conflate full reward omission with worse-than-expected 

outcomes. The waveforms and difference topographic plots for this analysis are detailed in 

figure 5. 

 

 
Figure 5. Graphical depiction of traditional ERP results. The left panel depicts the feedback-
locked ERP for each of four conditions. Negative is plotted downward and the red shaded area 
indicates the time period used for analysis of ERP amplitudes (250 – 350 ms). Topographic 
plots to the right indicate the scalp distribution of the worse-than-expected minus better-than-
expected difference. Topoplots are plotted with a standard hot-cold color template where red 
colors indicate positivities in the difference waveform and blue colors indicate negativities in the 
difference waveform. Both topographic plots are shown with a symmetric colormap to facilitate 
comparison of results. The colormap limits are indicated on the bar to the right of the 
topographic plots. 
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3.2 Single-Trial analysis of brain and behavior 

3.2.1 Changes in reaction times are modulated by reinforcement salience 

Rather than analyzing differences in mean RT, in this next section I use robust 

regression analysis to examine how single-trial RTs change over the course of the task 

(denoted as trial number from now on). For positive reinforcement conditions with better-than 

expected outcomes, only a main effect of trial number on RT was significant, mean beta weight 

= -.057, t(53) = -3.39, p = .001, which indicated that correct RTs became faster as trial number 

increased but this effect did not depend on the value of the prediction error. For positive 

reinforcement conditions with worse-than-expected outcomes, a mean effect of trial number was 

significant, mean beta weight = -.103, t(53) = -2.49, p = .015. This effect again indicated that 

correct RTs became faster as trial number increased but this effect did not depend on the value 

of the prediction error. This indicates an interesting null effect of continuous PE on reaction 

times in positive reinforcement. This is likely due to the fact that our task manipulation always 

resulted in some level of reward for positive reinforcement – correct trials, unlike task designs 

which conflate worse-than-expected outcomes with error commission. 

Results for RTs following better-than-expected negative reinforcement outcomes 

indicated only a significant interaction between continuous PE value and trial number, mean 

beta weight = -.111, t(55) = -2.983, p = .004. Results for worse-than-expected negative 

reinforcement outcomes indicated significant main effects of both continuous PE, mean beta 

weight = .111, t(55) = 2.772, p = .007, and trial number, mean beta weight = -.06, t(55) = -3.892, 

p = .0003, as well as a significant interaction between continuous PE value and trial number, 

mean beta weight = .088,  t(55) = 3.005, p = .004. These interaction effects were examined in 

more detail by utilizing the suggestions of Aiken, West, and Reno (1991), Barron and Kenny 

(1986) and Dawson (2014) in probing the impact of trial number on following reaction times at 

low (-1 SD) and high (+1 SD) levels of prediction error value. 
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For better-than-expected negative reinforcement outcomes, I found that more positive 

prediction error values (+1 SD, i.e. further from expectation) resulted in increased faster RTs 

over the course of the task, mean beta weight = .18, t(55) = 2.021, p = .04, but less positive PE 

values (-1 SD, i.e. closer to expectation) resulted in slower RTs over the course of the task, 

mean beta weight = -.04, t(55) = -2.16, p = .03. For worse-than-expected outcomes negative 

reinforcement outcomes, I found that more negative PE values (-1 SD, i.e. further from 

expectation) resulted in faster RTs over the course of the task, mean beta weight = -.15, t(55) = 

-5.34, p = 1.97e-6, but less negative PE values (+1 SD, i.e. closer to expectation) did not result 

in changes in response time as trial number increased (p = .47).  

These effects demonstrate the influence of prediction errors and trial number on learning 

following negative reinforcement (by examining the next trial’s behavior). Responses become 

quicker over trial number following unexpectedly better-than-expected negative reinforcement 

outcomes, and following worse-than-expected negative reinforcement outcomes responses 

become slower over the course of the task when outcomes are nearer to the expectation. 

Meanwhile, these results show that following positive reinforcement conditions, responses 

become quicker over the course of the task (trial number) and do not depend on the value of 

prediction errors. This suggests that in this task, participants learning was modulated by 

prediction errors in negative, but not positive, reinforcement conditions. 
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Figure 6. Single-trial reaction time analysis. I investigated the impact of reinforcement type 
(positive or negative), PE type (worse or better than expected), signed PE, and trial number by 
using separate single-trial robust regression of reaction times following worse-and-better than 
expected positive and negative reinforcement outcomes as a function of signed PE, trial 
number, and their interaction in order to specifically examine the influence of prediction error 
values on task learning, measured using RTs. Bar graphs depict mean between-subject 
regression results and t-tests for differences from zero; line graphs depict moderation analyses 
of significant interaction effects using the standard method of testing moderation effects at -1 
SD and +1 SD from the mean. Important effects for further analysis are outlined in red for 
readability. There was only a main effect of trial for positive reinforcement conditions, but an 
interaction of trial and continuous PE for negative reinforcement trials. 
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3.2.2 FRN reflects processing of reinforcement and trial number 

I analyzed the single-trial raw EEG by using robust regression in the same way as RTs 

described in the preceding section. This model was fit to every post-stimulus time point from 96 

to 600 ms, yielding 64 regressions which were corrected for multiple comparisons using the 

false discovery rate (FDR; Benjamini & Yekutieli, 2001). Interestingly, single-trial ERP 

regression results indicated only significant main effects of trial number on the feedback-locked 

ERP; no effects of continuous PE were present (all p > .016, did not meet FDR cutoff). The 

effect of trial number on the ERP was not significant in all task conditions. Specifically, an early 

mediofrontal effect (maximal 140 ms) likely corresponding to trial number modulation of the 

frontal N1 was significant in positive reinforcement better-than-expected trials, positive 

reinforcement worse-than-expected outcome trials, and negative reinforcement worse-than-

expected trials, while a later mediofrontal effect of trial number corresponding to the FRN was 

significant only for positive reinforcement better-than-expected trials and negative reinforcement 

worse-than-expected trials (i.e. the most salient outcomes). For N1 effects, results indicated that 

over increasing trial numbers the N1 grew more positive, i.e. habituated. For FRN effects, 

results instead indicated that the FRN grew more negative over the course of the task, likely 

corresponding to task learning effects which occur as trial number increases. Interestingly, the 

effect of trial number on the FRN was only significant for positive reinforcement trials with better-

than-expected rewards and negative reinforcement with worse-than-expected aversive stimuli. 

All statistics for this analysis are presented graphically in figure 7. 
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Figure 7. Single-trial ERP regression results. Results indicated no effect of continuous PE on 
the mediofrontal ERP. Instead, the main effect of trial number was significant for the FRN only 
when the outcome was salient (i.e. positive reinforcement better-than-expected outcomes, 
negative reinforcement worse-than-expected outcomes), in line with previous evidence that the 
FRN primarily reflects a binary decision of outcome-expectation match. Interestingly, there was 
also a main effect of trial number on the mediofrontal N1, which indicated that the N1 grew less 
negative (i.e. habituated) as trial number increased. This effect is line with the interpretation of 
the N1 as an early sensory potential, which is expected to habituate as a subject becomes 
familiar with task stimuli and requirements. Topographic plots are included to demonstrate the 
spatial extent of the observed effects, and do not indicate significance or lack thereof in 
themselves. Topographic plots are shown with a standard hot-cold color scheme where red 
indicates positive regression coefficients and blue indicates negative regression coefficients. 
Red shades in line plots indicate regions of significant single-trial regressions. Significance for 
within-subject regression coefficients was determined using one-sample t-tests, which test 
against a null hypothesized sample mean of zero.  



www.manaraa.com

 40 

3.2.3 FRN trial number effects differ by reinforcement and PE 

While the previous results indicated that the regression effect of trial number was 

significant for positive reinforcement better-than-expected trials and negative reinforcement 

worse-than-expected trials (i.e. for only the most salient trials or the trials furthest from the 

average outcome over all conditions), this does not directly indicate whether the representation 

of trial number is different between different types of trials. That is, the effect of trial number 

might have been barely non-significant in one or more conditions, but not significantly different 

from other conditions. Therefore, I conducted a series of 2 X 2 repeated-measures ANOVAs on 

the beta coefficient for waveform trial number at each point from 96 – 600 ms. The statistical 

results of this set of ANOVA analyses, including F-values, p-values, and ηp
2 (a measure of 

ANOVA effect size), are presented graphically in Figure 8. Results after correction for multiple 

corrections showed no main effects of reinforcement type or outcome type on mediofrontal beta 

weights for trial number, but a significant interaction between reinforcement type (positive or 

negative) and outcome (worse-than-expected or better-than-expected) emerged from 200 – 250 

ms indicating that the neural representation of trial number differed between the four conditions.  

 

 
Figure 8. ANOVA testing of single-trial regressions. I tested whether regression weights for trial 
number differed by condition using a series of 2 X 2 repeated-measures ANOVAs. Shaded 
areas of line plots indicate regions of significance over time.  Results indicated a significant 
interaction between the factors of Reinforcement Type (positive or negative) and Outcome Type 
(better-than-expected or worse-than-expected) during the same time period as the FRN has 
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been identified in the literature and the same time as the significant mediofrontal effects of trial 
number in the previous analysis, confirming that the brain representation of trial number differs 
between conditions. Topographic plots do not indicate significance or lack thereof but are 
instead shown only to indicate the relative spatial extent of the observed effects. Topographic 
plots are shown with the same standard hot-cold color scheme where red indicates high 
ANOVA F-values and blue indicates low ANOVA F-values. Note that the dominance of blue (low 
F) shows the relatively low ANOVA F-tests for nearly all points; the mediofrontal cluster that is 
lighter blue is the only region where the ANOVA tests were near significance. Due to individual 
differences in which sensor provided the best model fit and was therefore selected for further 
analysis, the actual sensors selected for analysis showed a significant interaction effect while 
the topos only show a region that is closer to significance than other points. 

 

I quantified the results of this ANOVA interaction by using serial t-tests to determine the 

simple effects of reinforcement type and outcome type on the brain representation of trial 

number. Note that this procedure returns the same values as typical post hoc analyses 

computed in e.g. SPSS using either a LSD or Bonferroni correction, as this software does not 

apply any correction for factors with less than three levels; therefore, these results are 

equivalent to any corrected post hoc procedure which might be employed in SPSS. Results 

indicated that, as expected based on the previous results (section 3.2.2) mediofrontal beta 

weights for trial number were greater for positive reinforcement better-than-expected outcome 

trials and for negative reinforcement worse-than-expected outcome trials than for positive 

reinforcement worse-than-expected outcome trials or negative reinforcement better-than-

expected outcome trials. All statistical results from this analysis, including t-values and p-values, 

are presented graphically in Figure 9. 
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Figure 9. Post hoc testing of single-trial ANOVAs. I used serial t-tests to determine the source of 
identified interaction effects from repeated-measures ANOVA. Results indicated that for the 
most salient outcomes, i.e. the outcomes furthest from the overall task average (positive 
reinforcement better-than-expected, negative reinforcement worse-than-expected), the impact 
of trial number on the mediofrontal potential was strongest, while it was significantly lower for 
the less salient outcomes, i.e. the outcomes closest to the overall task expectation (positive 
reinforcement worse-than-expected, negative reinforcement better-than-expected). 

 

3.2.4 Mediofrontal ERP predicts aversive reinforcement learning 

To determine whether the mediofrontal ERP predicts learning in the following trial, I used 

the approach and matlab program described in (Fischer & Ullsperger, 2013). That is, I fit a 

stepwise regression model to the RT where the first steps of the model were the same as 

described above in Section 2.1. In the second step of the regression, I used single trials of 

feedback-locked EEG to predict RTs on the following trial, therefore testing whether neural 

processing of reinforcing events predicts adaptation of reaction times over and above the 

behavioral impact of the task. Critically, feedback-locked EEG robustly predicted RT on the 
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following trial, but only for negative reinforcement conditions with aversive (i.e. worse than 

expected) outcomes. This is in line with prior evidence suggesting that mediofrontal involvement 

in reinforcement, as well as the release of DA via the mesocortical tract, is primarily modulated 

by aversive experiences. Therefore, it is to be expected that mediofrontal brain activity should 

predict reaction times only following delivery of aversive stimuli. By contrast, positive 

reinforcement conditions never deliver aversive stimuli – the worst outcome in positive 

reinforcement conditions was an outcome of +20 points, which while lower than expectations, 

cannot be said to be an aversive stimulus. All statistical results from this analysis are illustrated 

graphically in Figure 10. 

 

 
Figure 10. Single-trial brain-RT regression results. I used stepwise regression to determine 
whether feedback-locked brain activity in any of the four task outcome conditions predicted RT 
on the following trial. Topographic plots indicate the beta weights of EEG predicting reaction 
times using a standard hot-cold color template where blue indicates more negative beta 
coefficients while red indicates more positive beta coefficients. Results indicated that 
mediofrontal activity only predicted future behavioral adaptation in negative reinforcement 
conditions that were paired with delivery of an aversive stimulus. Notably, the effect of brain 
activity on following trial RTs also concentrated over mediofrontal electrodes (red clusters 
indicating positive beta weights). More specifically, the FRN exhibited a positive relationship 
with RT, such that more negative FRN amplitude over the course of the task predicted faster 
RTs, in line with an interpretation of the effect of trial number on the FRN as a learning signal. 
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This is in line with the suggestion that mediofrontal cortex is sensitive to release of DA 
according to evidence from Lammel (2015), who indicated that activity of the mesocortical DA 
tract selectively drives aversive reinforcement learning. 

 

4 Discussion 

In this study, I examined reinforcement learning effects in behavior (RTs) and the 

relationship of reinforcement learning to the mediofrontal ERP using a reinforcement learning 

task that avoids many of the pitfalls inherent in standard FRN analyses. Specifically, this task 

generated trial-by-trial expectancy-outcome discrepancies (prediction errors, PEs) in a way such 

that participants did not necessarily pair “incorrect” response feedback with “worse-than-

expected” outcomes and “correct” feedback with “better-than-expected” outcomes. Furthermore, 

I used a computational approach to examine the ERP at the level of single trials. This is 

necessary in order to actually test neural implementations of reinforcement learning algorithms, 

as all extant learning algorithms specify the update of expectancies either trial-by-trial (Rescorla 

& Wagner, 1972) or continuously over time (Sutton & Barto, 1998). In standard studies of 

reinforcement learning and the feedback-locked ERP, this theoretically mandated change over 

time is nullified by the approach of averaging brain potentials over the entire task. Finally, I 

examined behavioral output in the same trial-by-trial manner as the ERP. This allows me to 

theoretically ground my behavioral results in animal literature indicating outcome- and trial 

number-dependent changes in reaction times, as well as to make putative conclusions about 

the differential impacts of tonic vs. phasic shifts in DA concentration released via the 

mesocortical pathway. 

4.1 Comparison of Results to Standard ERP Studies of Reinforcement 

There is a long-standing debate about whether the feedback-related negativity (FRN) 

signals a salience prediction error or a value prediction error (Figure 1). While there is a general 

agreement that we primarily learn the importance of environmental stimuli based on rewarding 
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and aversive experiences (Dayan & Balleine, 2002; Sutton & Barto, 1998), there is substantial 

disagreement in the ERP literature about how these signals are displayed in the cortex. 

4.1.1 The Reinforcement Learning Feedback Related Negativity Hypothesis 

Since the initial inception of the reinforcement learning FRN hypothesis (RL-FRN; 

Holroyd & Coles, 2002) a substantial body of evidence has been built suggesting that the FRN 

conveys a dopaminergic (DA) signed (value) PE signal. Holroyd & Coles (2002) argue for the 

existence of two separate neural systems that together influence adaptive behaviors, i.e., a 

mesencephalic reinforcement learning system and a “generic” error monitoring system in the 

cingulate cortex. Through combined computational modeling and psychophysiological 

experimentation, they suggest that the error-related negativity (ERN), a negative-going ERP 

component peaking soon after the commission of behavioral errors, might be elicited when an 

error-monitoring system detects that outcomes are worse than expected, and that this error 

signal is used to train motor systems in line with reinforcement learning principles. Citing prior 

evidence that delayed error feedback also produces an ERN-like deflection (Miltner, Braun, & 

Coles, 1997), the authors argue that this potential is not generated merely by the commission of 

an error, but instead by detection of the error, or perhaps by the use of the behavioral error to 

guide future behavior. They tested this hypothesis by having subjects complete a probabilistic 

reinforcement learning task utilizing certain and uncertain reward predictors, and correct or 

incorrect feedback. Change over time in the feedback-related negativity was assessed by 

binning ERPs into ten-trial running averages. Results indicated tonic shifts in the amplitude of 

the FRN over the task, which depended on the delivered outcome and the probability of that 

outcome. In general, since this initial study the impact of time on the feedback-locked brain 

potential has been discarded in favor examining the specific type of PE term contained in the 

ERP. Citing evidence from Schulz’s group, Holroyd & Coles (2002) contend that any DA 

reinforcement learning signal should follow a value function, and therefore suggest that the FRN 

must be influenced by the value discrepancy between the outcome and expectation. At the time 
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Holroyd and Cole published their work on the RL-FRN hypothesis, the value hypothesis 

concerning DA response was the dominant perspective in the neurophysiological literature 

examining reinforcement learning. The possibility that this cingulate-generated signal should 

reflect a value signal has been supported by many studies since their initial publication but is not 

in line with known neurophysiology of the DA system that has come to light since this 

hypothesis was conceived. 

4.1.2 FRN Results Part 1 (Standard ERP Studies): Lack of Positive Reinforcement 

Coding in the FRN 

Initially I conducted a standard ERP analysis (averaging across trials) of the feedback-

related negativity to render these results comparable to the bulk of the literature on the FRN. My 

results indicated that the FRN only differentiated between worse-than-expected and better-than-

expected outcomes in negative reinforcement conditions. Furthermore, the FRN was more 

negative following better-than-expected negative reinforcement outcomes than following worse-

than-expected outcomes. My results did not indicate any difference in the mediofrontal ERP 

between worse-than-expected and better-than-expected positive reinforcement outcomes.  

This null effect is contrary to the bulk of the FRN literature. For example, the initial set of 

studies on which the RL-FRN hypothesis was founded (Holroyd & Coles, 2002) indicated that 

the FRN was more negative for reward omission than for reward delivery. This result was 

replicated and the RL-FRN hypothesis extended by the results of Holroyd, Pakzad-Vaezi, and 

Krigolson (2008). While Holroyd et al. (2008) indicated again that the FRN was more 

pronounced for reward omissions than reward deliveries, they reinterpreted the basis of these 

results as a correct-related positivity in the waveform. It is important to note at this point that the 

interpretation of the mediofrontal potential as a reward positivity (as opposed to an aversion 

negativity) relies only on the order in which a difference wave is computed, as difference waves 

have been the method of choice in most of the past literature examining the feedback-locked 

mediofrontal potential. As our study does not use difference waves, we refer to the potential by 
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the original and standard name in the literature, in line with inspection of our grand-average 

waveforms indicating a negative-going peak during the time period of 250-350 ms post-

feedback. The result describing a more negative mediofrontal potential following reward 

omission than reward delivery has been replicated many times in the literature. For example, 

Cooper, Duke, Pickering, and Smillie (2014) recorded EEG during an associative learning task 

that used only positive reinforcement and produced results clearly indicating that the FRN was 

most pronounced for unexpected reward omission, in line with an aversion account of the FRN. 

A study by Potts, Martin, Kamp, and Donchin (2011) introduced the task design that the Cooper 

et al. (2014) study was based on and provided essentially equivalent results, namely that the 

FRN was most negative for unexpected reward omissions in line with an aversion PE.  

However, the current task design differs from previous task designs in one critical 

aspect. Note that the previously cited works have all compared the delivery of a reward to the 

omission of a reward, following the Skinnerian definition of positive reinforcement. However, 

these studies shared a common flaw that appears to be largely unrecognized in the literature. 

Namely, mediofrontal activity is highly sensitive to knowledge of error commission and 

performance monitoring. While a discussion of the effect of error and performance monitoring is 

largely outside the scope of this manuscript, we refer the reader to a recent review by Gehring, 

Goss, Coles, Meyer, & Donchin (2018) covering the error-related brain potential. Indeed, work 

demonstrating the influence of errors and error feedback on mediofrontal ERPs is far more 

numerous than work examining the response of the mediofrontal potential to prediction errors. 

For example, a PubMed search combining the terms using the search terms (“FRN” OR 

“feedback-related negativity” OR “feedback negativity” OR “reward positivity”) AND (“prediction 

error”) conducted over the last ten years returns 89 studies, while a search for ("ERN" OR 

"error-related negativity" OR "error negativity") returns 1019 studies in the last ten years. 

So why is the fact that mediofrontal cortex is sensitive to the commission and recognition 

of errors important for the current work? Interestingly, the previous studies all had something in 
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common. Namely, “worse” outcomes, or reward omissions, always occurred on incorrect trials, 

while “better” outcomes, or reward deliveries, always occurred on correct trials. I propose that 

this inherently confounds the mediofrontal response to errors and the mediofrontal response to 

PEs. This confound is thoroughly engrained in the literature examining whether the FRN reflects 

a PE. In fact, in the original RL-FRN paper by Holroyd and Coles (2002) the FRN was called the 

feedback error-related negativity. This confound is notably not present in the original work 

documenting dopaminergic PEs by Schulz’ research group (1997, 1998). In this work, monkeys 

were simply cued to create an expectation of reward, which was then delivered (expected) or 

not delivered (unexpected). Therefore, while the animal research the RL-FRN hypothesis was 

initially built on did not confound performance monitoring signals with PE signaling (the monkey 

did not perform), most of the human PE research has carried this confound. 

Our task design notably does not contain this confound in any analysis. I analyzed only 

correct trials, and more specifically only trials where participants already knew they were correct 

in their response (see Figure 1). Therefore, this study design allows for the systematic violation 

of reward expectations, while controlling for error monitoring effects (that is, there were none 

because all trials analyzed are correct). Our finding of a null difference between worse-than-

expected and better-than-expected outcomes in positive reinforcement therefore suggests that 

in the absence of error monitoring, mediofrontal potentials might not signal reward prediction 

errors. 

4.1.3 FRN Results Part 2 (Standard ERP Studies): Negative Reinforcement (Aversive) 

Coding in the FRN 

Our results for negative reinforcement conditions tell a different story, indicating that the 

FRN is primarily responsive to aversive outcomes, rather than graded positive outcomes. 

Specifically, our analysis of the ERP shows that the FRN is more negative for better-than-

expected outcomes in negative reinforcement (that is, those outcomes where the subject 

expected zero points but instead received a small reward) compared to worse-than-expected 
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outcomes in negative reinforcement conditions (that is, those conditions where the subject 

expected zero points but instead lost a small number of points). These results cannot be 

attributed to any form of error monitoring as the participants were already informed that their 

response was correct (see task design section for more info on this; see Figure 1). Importantly, 

the absolute deviation of rewards and punishments from the average expectation was 

equivalent between positive and negative reinforcement in our study, indicating that the FRN is 

indeed more sensitive to aversive expectancy violation than positive expectancy violation. A 

number of studies support a view of the FRN as carrying primarily aversive information or 

negative PEs.  

For example, among the (admittedly small) number of studies that have examined the 

FRN in negative reinforcement conditions, the finding of a more negative potential following 

better-than-expected outcomes compared to worse-than-expected outcomes is well established. 

This effect was initially described in a seminal study by Talmi, Atkinson, and El-Deredy (2013) 

using blocks of positive reinforcement with money as the reinforcer, and negative reinforcement 

with electric shock as the reinforcer. This study was the original study to show an effect that 

when both positive and negative reinforcement are considered, the FRN flips sign between 

positive and negative reinforcement conditions, indicating a salience signal rather than a value 

signal. Specifically, the FRN was more negative for omitted positive and negative reinforcement 

outcomes than for delivered positive or negative reinforcement outcomes. Our results uphold 

the results of Talmi et al.’s analysis for negative reinforcement conditions, indicating that the 

FRN is more negative for better-than-expected negative reinforcement conditions than worse-

than-expected negative reinforcement conditions. Huang and Yu (2014) demonstrate convincing 

convergent evidence for this effect in a task that includes both positive and negative 

reinforcement. This task generated the result that FRN amplitudes were more negative for 

reward omissions compared to reward deliveries, but more negative for punishment omissions 

than for punishment deliveries. Since these types of outcome are opposite in valence this must 



www.manaraa.com

 50 

be interpreted as salience coding. Sallet, Camille, and Procyk (2013) demonstrate a similar 

effect using multiple levels of positive and negative PE. They indicate that the FRN is most 

negative for the worst positive PEs, but is most negative for the best negative PEs.  

This flip in sign between positive and negative modalities (i.e. the FRN is most negative 

for reward omissions, but most negative for escape from aversive outcomes as well) strongly 

supports the notion of salience coding in the FRN. Hird, El-Deredy, Jones, and Talmi (2018) 

demonstrate convergent results using a paradigm that delivered appetitive and aversive tastes. 

They observed a “typical FRN” (more negative for reward omission) in the appetitive condition, 

but a “reverse FRN” for aversive tastes (that is, the FRN was more negative for omission of 

aversive outcomes than for delivery of aversive outcomes), in line with a salience account. 

While this study also demonstrated aversive PEs later in the waveform, there were notably no 

effects of reward PE, in opposition to RL-FRN theory. Pfabigan et al. (2015), using a Monetary 

Incentive Delay (MID) paradigm, demonstrate that the FRN is more negative for reward 

omission compared to reward delivery, but is reversed for negative reinforcement, being more 

negative for avoidance of aversive stimulus delivery than for delivery of aversive stimuli. These 

“reverse FRN” results were replicated in a study I completed last year (Rawls, Miskovic, Moody, 

Lee, Shirtcliff, & Lamm, under review), again using an MID paradigm. In a critical step, Pfabigan 

et al. (2015) demonstrated that activity localized to cingulate cortex (putative generator of the 

FRN) showed the same effects that were observed at the scalp level. This is notable, because it 

suggests that indeed, as predicted by neurobiology, the cingulate cortex computes salience, not 

value, PEs. In one of the most convincing source-localized FRN studies, Hauser et al. (2014) 

simultaneously recorded EEG and fMRI during a probabilistic reinforcement learning task. This 

study rigorously examined the expression of signed and unsigned PEs in the post-feedback 

waveform while using the superior spatial information provided by fMRI to localize the FRN 

definitively to the cingulate cortex. This study orthogonalized signed and unsigned PEs (which 



www.manaraa.com

 51 

are often correlated), and demonstrated that only unsigned PEs project to the FRN topography 

using dynamic causal modeling. 

It is not surprising to the author that more studies support the view of the FRN as being 

responsive to salient, primarily aversive, outcomes, as it is in line with basic neurobiology of the 

DA system, which is known to carry primarily aversive information along the mesocortical 

pathway in animal models (Lammel et al., 2008; Lammel et al., 2011). Our trial-averaged results 

fully support previous findings that the FRN is more negative for better-than-expected outcomes 

than for worse-than-expected outcomes when negative reinforcement is cued. Original RL-FRN 

hypotheses suggest that dopamine release might inhibit the apical dendrites of pyramidal cells 

in mediofrontal cortex, resulting in a more positive potential (since the FRN is a negative-going 

potential following feedback). Our results are well in line with this long-standing way of thinking. 

Specifically, based on known neurobiology, we would hypothesize that dopamine release in 

cortex should increase as aversive outcomes are delivered, which could explain the less-

negative mediofrontal potential (FRN) following worse-than-expected outcomes compared to 

better-than-expected outcomes for negative reinforcement. 

4.2 Single-Trial Analysis of Reinforcement Learning 

4.2.1 Single-Trial Results Part 1: Influence of Trial number on The Feedback-Related 

Negativity 

If hypotheses regarding the biological underpinnings of the FRN are true, then there 

should be a change in the ERP amplitude as outcomes are learned. While the original RL-FRN 

paper (Holroyd & Coles) indicated that the FRN became more negative as trial number 

increased, and this activation instead propagated to the outcome cue over time in line with 

expectations of a DA modulated signal, relatively few studies have examined the hypothetically 

mandated shift in FRN amplitude over the course of the task. A notable exception is Krigolson, 

Hassal, and Handy (2014), who convincingly demonstrated that the aversion PE in the FRN 

became more negative over time while the corresponding potential in response to reinforcement 
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cues became less negative over time. Our results show the very same effect – specifically, that 

the FRN grows more negative as trial number increases, i.e. as the task is learned. 

Furthermore, I indicate the novel results that this trial-by-trial shift in the negativity of the 

waveform is gated by salient reinforcement outcomes – specifically, the effect of trial number on 

increased FRN negativities is driven entirely by better-than-expected rewards and worse-than-

expected aversive outcomes (most salient outcomes). This suggests that the FRN should 

become more negative as trial number increases following salience PEs – which is not in line 

with the interpretation of the FRN as a “reward positivity.” Indeed, it is notable that more recent 

studies of differences in dopaminergic projections have shown that only mesolimbic DA 

projections carry reward signals. Additionally, recent animal neurobiology results have shown 

that mesocortical DA projections carry primarily aversive PEs, while some mesocortical DA 

neurons carry salience information. Our results are in line with the interpretation of the FRN as 

primarily responsive to salient outcomes (better-than-expected rewards and worse-than-

expected outcomes), as well as meeting basic predictions that the FRN should scale with 

learning over time (and replicating Krigolson et al., 2014 who demonstrated that the FRN grows 

more negative over time). Put another way, the FRN rapidly becomes more negative as task 

contingencies are learned. A Pearce-Hall salience signal (Pearce & Hall, 1980) is often referred 

to as a “learning rate,” suggesting that learning should increase with more salient outcomes. 

Since the FRN becomes more negative with learning, it is no surprise that the impact of trial 

number on the FRN is only significant for the most salient outcomes (reflecting increased 

learning following more salient, compared to less salient, outcomes). Specifically, the FRN 

becomes more negative over the course of the task, which reflects a learning effect, but this 

learning effect is most pronounced following salient outcomes, in line with the notion that the 

FRN reflects a Pearce-Hall salience PE. This can be viewed in light of the hypothesis that the 

FRN is impacted by a dopaminergic salience signal. As task outcomes are learned over the 

course of time, dopamine release dwindles. That is, dopamine release is expected to decrease 
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proportionally to how well or thoroughly an organism learns the requirements of a task. Since 

dopamine primarily reflects a learning signal, dopamine release is increased when the organism 

needs to learn task constraints but will decrease over time as task constraints are cemented 

behaviorally (the organism no longer needs to learn, as it already knows how to complete the 

task). Thus, as the organism learns and dopamine release dwindles, FRN amplitudes increase. 

Finally, our interpretation of the FRN as a reinforcement learning signal is cemented by our 

single-trial brain-behavior regression results indicating that more negative FRN amplitude 

following worse-than-expected aversive stimulus delivery spurred more adaptive responding in 

the following trial. This provides empirical evidence that negative shifts in the FRN over the 

course of the task following aversive outcomes are indeed predictive of future reinforcement 

learning, rather than merely reflecting habituation. 

4.2.2 Single-Trial Results Part 2: Influence of Trial Number and Prediction Errors on 

Reaction Times 

Many, if not most, studies of the FRN information content are notably without a 

corresponding analysis of behavior evoked during the task. However, in order to fully 

understand the computations the cortex is undergoing during reinforcement processing, 

behavior should also be analyzed. Specifically, there is a large amount of prior evidence, 

primarily from animal studies, that shows definite impacts of reinforcement and dopamine levels 

on the speed of responses (in animal literature referred to as vigor). Bryce and Floresco (2019) 

trained rats in an effort-discounting task where rats chose between low-effort, low-reward 

scenarios and high-effort, high-reward scenarios. They then tested these effects while D2 

receptors in the nucleus accumbens were stimulated. Results indicated that excessive 

stimulation of DA receptors resulted in longer response latencies (reduced response vigor) and 

lower willingness to expend effort to obtain a reward. In interpreting this result it is key to note 

that the nucleus accumbens is targeted by the mesolimbic set of DA projections, and therefore 

carries primarily reward information – as the authors perfused NAcc with DA, this likely resulted 
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in the rats already feeling a sense of subjective reward that would be expected to lower 

response vigor (slower RTs) in the pursuit of additional reward. Our results for the outcome-

related shift of reaction times were confined to negative reinforcement and indicated that 

following better-than-expected outcomes participants were slower in their next responses, but 

that participants increased reaction speed following unexpectedly large punishments. This is 

well in line with Bryce and Floresco’s (2019) study, which indicated that following DA perfusion 

in NAcc, rats were already satiated and did not pursue rewards as readily. We interpret our 

results indicating that participants slowed responses following better-than-expected negative 

reinforcement outcomes in light of the aforementioned results and suggest that following better-

than-expected negative reinforcement outcomes, our participants were already “satiated” and 

had less motivation to respond quickly.  

Bryce and Floresco (2016) indicated that this tradeoff between effort and reward seeking 

was altered by infusion of a stress factor (corticotropin-releasing factor; Bryce & Floresco 2016). 

This indicated that infusion of a stress agonist reduced the willingness of animals to pursue 

high-effort options. While this might seem at odds with our results for reaction times in negative 

reinforcement (in which responses became faster following aversive outcomes) it is important to 

note that there was no aversive learning occurring in the aforementioned animal study since 

CRH was administered by the investigator. I instead suggest that when the opportunity to 

escape further punishments is made possible by responding more quickly (as in our task), the 

expected reinforcing effects of aversive stimulus delivery are seen – that is, in an effort to avoid 

further aversive stimuli, humans increase response speed following punishment. 

Niv, Daw, Joel, & Dayan (2007) extend reinforcement learning models to operant tasks, 

and indicate that tonic levels of DA shift the willingness of an agent to engage in more effortful 

behavior. Specifically, results indicate that higher tonic levels of DA facilitate slower but more 

exploratory responding. Our examination of RTs following positive reinforcement, where 

participants were given a graded level of reward on every trial, support the model by Niv et al. 
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(2007). As the average reward was learned, and indeed as participants learned that positive 

reinforcement correct feedback would never be followed by an omission of reward or a loss, 

tonic levels of DA would be required by neurobiological theories to decrease, facilitating 

monotonic effects of increased reaction speeds over the course of the task as we demonstrate 

(main effect of trial number on single-trial RTs for positive reinforcement). This particular 

hypothesized tonic effect was reflected in neural activity following rewarding outcomes, as we 

demonstrate that the FRN becomes more negative over time following better-than-expected 

rewards. Interpreting the FRN through theories suggesting it is influenced by release of 

dopamine in cortex, this potential would be expected to grow more negative over time as 

dopamine release in cortex decreases. We found precisely this effect using single-trial analysis. 

While the previous mentioned study was a theoretical model, this result was empirically 

demonstrated in a human sample by Guitart-Masip, Beierholm, Dolan, Duzel, & Dayan (2011), 

who indicated that the average reaction time was partially explained by the average rate of 

reward in a task, which changed slowly but systematically. This study did not examine the 

influence of immediate reward on RTs as our study did, but I also note that in positive 

reinforcement conditions I found null effects of immediate reward but instead only a tonic effect 

where reaction time speeded as trial number increased. This is in line with the findings of 

Guitart-Masip et al., and indicates that as subjects learned the average rate of reward in the 

task their responses became faster.  

In a novel study of changes in human reaction times combined with fMRI scanning, 

Evers, Stiers, and Ramaekers (2017) probed the effect of tonic and phasic shifts in DA on RT. 

Notably, this study indicated that tonic DA levels in striatum indicate an average reward signal, 

and predicted faster RTs. Meanwhile, tonic shifts in DA decreased the striatal response to gains 

and losses in a task (phasic shifts in DA). This is in line with our positive reinforcement results 

for RTs, suggesting that reduced phasic DA release as rewards are learned facilitates faster 

and less exploratory responding. The present study appears to be the first attempt to extend the 
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analysis of reinforcement-modulated reaction time learning to negative reinforcement 

conditions, and therefore it remains to be seen what this effect might look like in an animal 

model, or indeed in a standard reinforcement learning task. However, taken together, the 

aforementioned results show that reaction time shifts to faster responding as task outcomes and 

contingencies are learned. This result fits well with our results indicating faster responding and 

greater learning immediately following aversive negative reinforcement outcomes, which is in 

line with theories holding that organisms must learn from negative outcomes to avoid those 

same outcomes in the future. 

4.3 Limitations of the Current Study 

While the study described in this manuscript remedies many shortcomings and 

confounds of previous studies of the FRN, it is not without limitations. Perhaps the most limiting 

factor of this study is the novel design of the task, which means that replication of this study 

design and of these effects are necessary before strong conclusions can be drawn from this 

study. Furthermore, the inspiration for this study comes primarily from invasive animal research 

examining dopamine neurobiology. While our results are largely in line with what must be 

expected of dopaminergic activity in cortex, we are not able to make any claims that the 

observed effects are rooted in dopamine neurotransmission. It is possible that these effects are 

not tied to dopamine neurotransmission at all but are instead the result of endogenous 

computations undertaken completely in the cortex (Cavanagh & Frank, 2014; Cavanagh, 

Zambrano-Vazquez, & Allen, 2012). Since serotonergic neurons were also recently 

demonstrated to compute salience PEs (Matias, Lottem, Dugue, & Mainen, 2017), it is even 

possible that the observed brain potential effects are conveyed to cortex from neurons in the 

raphe nucleus. However, previous examinations of the FRN have repeatedly suggested that this 

potential is the result of cortical dopamine release, and so we interpret our results through this 

existing theoretical lens while incorporating more recent neurobiological examinations that were 

not known when the RL-FRN hypothesis was formulated. Finally, while our result controls for 
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the influence of error monitoring, it is still possible given the task design that the FRN is primarily 

responsive only to the valence of outcomes, and not to PEs. That is, the observed effects for 

negative reinforcement might be due simply to the fact that these outcomes were either gains or 

losses, while in positive reinforcement all outcomes were gains. However, under an axiomatic 

definition of a PE as merely reflecting a deviation from expected outcomes, the actual valence 

(gain or loss of points) should not be a determining factor. That is, a signed PE is decoupled 

from the valence of the outcome itself, and merely reflects whether the outcome was better or 

worse than expected, so this should not be a problem for the described study. 

4.4 Conclusion 

The present study utilized a unique manipulation to separate the influence of error and 

performance monitoring from the influence of worse- or better-than-expected outcome signaling. 

Previous studies using Skinnerian definitions of positive reinforcement (rewards are either 

delivered or omitted) have demonstrated that the FRN is more negative following omitted 

rewards than delivered rewards. However, previous studies have also largely confounded the 

influences of error monitoring in an effort to understand whether the FRN reflects a signed PE. 

In a task design that decouples the influence of error monitoring from outcome processing, we 

do not find any influence of worse-than-expected outcomes compared to better-than-expected 

outcomes in positive reinforcement conditions. This is in line with more recent animal 

neurobiology results, indicating that the mesocortical dopamine pathway carries primarily 

information about aversive salience rather than reward information (which is mostly localized 

along the mesolimbic dopamine pathway). In this controlled design, we still found the expected 

effect for negative reinforcement that better-than-expected outcomes resulted in greater 

mediofrontal negativity (FRNs; suggesting less mesocortical DA activity) compared to worse-

than-expected outcomes (suggesting more mesocortical DA activity). This is in line with 

neurobiological evidence that dopamine neurons projecting to cortex appear to increase firing 

rate following aversive stimuli, which by existing theories should inhibit the FRN (less negative 
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activation). If the FRN signaled value PEs, the effect we found (FRN is more negative following 

better-than-expected rather than worse-than-expected negative reinforcement outcomes) would 

necessarily have to be reversed. More specifically, if the FRN was sensitive to value PEs it 

would be more inhibited by DA activation for better-than-expected outcomes (rather than more 

inhibited for worse-than-expected outcomes). As dopamine neurons projecting to the cortex are 

known to become excited by aversive stimulus delivery, this might still be in line with Holroyd & 

Coles (2002) original notion that dopamine inhibits the apical dendrites of cortical pyramidal 

neurons. 

In a single-trial analysis of the FRN, we replicate previous evidence that the FRN grows 

more negative over time as task conditions are learned. This corresponds to a hypothesized 

decrease over time in dopamine levels in cortex, which by existing theories should disinhibit 

cortical pyramidal cells. Notably, we extended these results by showing that this change over 

time is only evident following salient outcomes, which according to extant theories are the 

outcomes that are most valuable to learn from. We showed that the FRN grows more negative 

over time following better-than-expected rewards and worse-than-expected aversive stimulus 

delivery, which are the most salient outcomes delivered in the task and therefore the most 

critical outcomes for a subject to learn from. We verify that this is indeed an effect of task 

learning, rather than an effect of mere habituation, by showing that following negative 

reinforcement worse-than-expected outcomes, more negative FRN amplitudes drive faster 

responding on the next consecutive trial. Taken together, our trial-averaged and single-trial 

analysis of the FRN indicates that the FRN is most sensitive to aversive outcomes and drives 

behavioral learning effects following aversive outcomes as well. This represents an important 

challenge to the dominant RL-FRN theory and provides neurobiologically-inspired evidence 

against the interpretation of the mesocortical dopamine tract as carrying a signed PE to 

mediofrontal cortex. 
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